
HOPE-L: A Lossless Database Watermarking
Method in Homomorphic Encryption Domain

1st Xueqi Zhang
University of Science and

Technology of China
Anhui, China

xqzhang7@mail.ustc.edu.cn

2nd Haiyong Xie
University of Science and

Technology of China
Anhui, China

hxie@ustc.edu.cn

3rd Hui Lin
National Engineering Laboratory
for Public Safety Risk Perception

and Control by Big Data
Beijing, China

linhui@whu.edu.cn

Abstract—Cloud computing has been widely adopted in the
Internet economy; however, this poses numerous risks including
illegal data copying and digital copyright infringement, leading
to the challenge on protecting the security and copyright of
key data stored in databases. In this paper, We propose a
novel method, Lossless Database Watermarking in Homomorphic
Encryption domain (HOPE-L), to address this challenge. Our
method combines the database encryption (i.e., homomorphic
encryption, order-preserving encryption) and information hid-
ing (i.e., lossless databased watermarking) technologies. More
specifically, the information hiding algorithm leverages the ho-
momorphic properties of the homomorphic encryption algorithm
to embed secret data. No distortion is introduced throughout the
data embedding process. Therefore, we can embed the watermark
into the encrypted data losslessly. The watermark can be used
to authenticate the copyright, and the recipients can directly
recover the original database without loss. Analysis and theorem
prove that HOPE-L can achieve more embedding space and no
distortion. Extensive experiments show that the whole operation
process is time-efficient, the embedded watermark is robust, and
HOPE-L performs more robust than the existing algorithms and
can resist common database attacks.

Index Terms—Encrypted database, Lossless database water-
mark, Homomorphic encryption, Order-preserving encryption

I. INTRODUCTION

The emergence of Internet has profoundly influenced and
changed people’s daily lives. With the rapid development of
cloud computing in the past decade, Internet-based systems
have collected enormous data and stored them in various
databases in the cloud [1]. Such data typically stores sensitive
information such as human behavior, video, location, and
so on. Numerous commercial systems have been built upon
collection as well as utilization of such data. In these systems,
digital transactions have become the norm. As a result, it has
become an urgent and significant challenge on how to protect
the security and copyright of these data stored in databases.

Researchers have proposed numerous solutoins in order to
protect and track the sensitive data (e.g., anti-counterfeiting,
copyright, and trace to the source). The existing solutions
involve two key technologies. The first key technology is
database encryption, which guarantees the security of database
content [2]. Since 1978, researchers have made many pro-
gresses on homomorphic encryption [2]–[6]. However, the
encrypted data must be decrypted when used them. Agrawal et
al. proposed methods to allow comparison on encrypted data
[7]–[10]; thus, when a database is encrypted and becomes a
ciphertext database, we can still perform relational operations.

The second key technology is database watermarking.
Database watermarking algorithms are challenging, because
databases often face frequent update operations and it is
difficult to find a large amount of redundant space to embed
watermarks. Due to these challenges, the research progress is
relatively slow. Furthermore, there is a more important issue
that the process of embedding watermarks may lead to changes
of original data. Additionally, in most cases, data should be
stored and retrieved wiht high accuracy, even a little distortion
may lead to incorrect results. In order to restore original data
without distortion, researchers proposed a reversible database
watermark embedding method [11]–[15].

So far, the combination of lossless watermarking algorithm
and database encryption is still a relatively frontier research
field in the world. The existing solution is to protect the
content security through database encryption, and verify the
copyright through database watermark. However, when storing
data in cloud-based databases, existing solutions face multiple
challenges on the security of the database content: joint
implementation of data security and copyright verification,
lossless watermark suitable for database, space- and time-
efficiency of embedding, robustness of database watermark to
resist common database attacks.

In this paper, we propose a two-step, novel method to
address the above challenges. In the first step, we propose
a novel database encryption system, homomorphic order-
preserving encryption (HOPE). In the second step, based on
HOPE, we propose a lossless database watermarking method
in homomorphic encryption domain, by combining homomor-
phic encryption, order-preserving encryption and information
hiding altogether. We refer to the final approach as HOPE-
L. Our method can achieve the protection of the copyright
and database content simultaneously. The recipient can directly
recover the original database without loss. The experimental
results and analysis show that HOPE-L achieves the advan-
tages of both space- and time-efficiency of embedding, strong
robustness, and no distortion.

We summarize our contributions as follows:

• We propose a novel method (HOPE), combining homo-
morphic encryption and order-preserving encryption, to
implement an encryption system on databases. HOPE can
protect the privacy of database content while maintaining
database availability.

• We propose a novel lossly database watermarking in



homomorphic encryption domain (HOPE-L). To the best
of our knowledge, HOPE-L is the first approach to
address the challenges of database security and copyright
protection simultanenously.

• We conduct theoretical analysis and extensive experi-
ments to prove that HOPE-L can achieve more embed-
ding space and no distortion. The embedded watermark
has strong robustness, and the whole operation process
is time-efficient. Additionally, HOPE-L performs more
robust than the existing algorithms and can resist common
database attacks.

II. RELATED WORK

Database Encryption. There are many databased encryp-
tion algorithms, most of which can be further divided into the
following two sub-categories.

The first sub-category is homomorphic encryption. Rivest et
al. proposed a semi-homomorphic encryption method based on
the problem of large integers [3]. Elgamal proposed a multi-
plicative semi-homomorphism based on the discrete logarithm
problem [4]. Paillier proposed an additive semi-homomorphic
encryption scheme, which improves the security of the al-
gorithm, and the algorithm is simple in construction [5].
The above encryption schemes belong to semi-homomorphic
encryption. Based on the lattice cryptography theory [6],
Gentry proposed a fully homomorphism scheme that allows
any operation on ciphertext. At present, fully homomorphism
is still not perfect, as this method is computationally expensive,
time consuming and in-efficient.

The second sub-category is order-preserved encryption
(OPE). To address the disadvantage of homomorphic en-
cryption (i.e., the encrypted data must be decrypted before
performing any operations on data, which is computationally
expensive), Agrawal et al. first proposed the concept of
OPE [7] in 2004. Subsequently, Popa et al. designed and
developed the CryptDB ciphertext database system [9] in
2011, which uses the order-preserving BCLO algorithm [8]
to achieve comparison and query operations in the database.
In 2013, Popa et al. proposed an order-preserved encryption
algorithm, mOPE, based on a binary sort tree [10].

Database Watermarking Technology. In 2002, Agrawal
et al. proposed the first database watermarking algorithm on
relational database [16]. Sion et al. proposed a new watermark-
ing algorithm using the statistical characteristics of data [17].
Subsequently, researchers proposed numerous watermarking
algorithms [17]–[20], most of which lead to data distortion.

In order to restore the original data without distortion,
researchers proposed a reversible database watermark embed-
ding method [11]–[15]. In 2006, Zhang et al. proposed the first
reversible watermarking scheme [21], but this method is not
robust. Gupta et al. proposed a reversible watermarking tech-
nique in 2008 based on differential extension (GADEW) [22].
In 2017, Imamoglu et al. designed a new type of reversible
database watermarking method with the firefly algorithm
(FFADEW) [23], which reduced the distortion. The existing
research has been exploring lossless watermarking, but there
is still no good method to achieve lossless and robust. The
lossless watermark embedding provides an excellent solution
for the database usability after embedding watermark.

Fig. 1: the sort tree.

TABLE I: OPCs for nodes in Fig. 1
Node Path (P ) OPC (c) Height (h)

A [] []100 3
B [0] [0]10 2
C [1] [1]10 2
D [00] [00]1 1
E [01] [01]1 1
F [10] [10]1 1
G [11] [11]1 1

Combination of database encryption and watermark-
ing. In recent years, there are only a few research on the
combination of these two technologies. For example, Xiang
et al. proposed a method of combining OPE with database
watermarking technology [24]. However, this method does not
allow database updates and can incur distortion on data.

III. HOPE: HOMOMORPHIC ORDER-PRESERVING
ENCRYPTION

In this section, we present a novel database encryption
algorithm that combines homomorphic encryption and order-
preserving encryption. The new algorithm is homomorphic
order-preserving encryption (HOPE). HOPE first encodes all
of the data using order-preserving coding, and then encrypts
the original data with homomorphic encryption.

In order to best illustrate the design of HOPE algorithm, we
next first review the two basic concepts of order-preserving
encryption and homomorphic encryption in Section III-A; we
then present the HOPE algorithm in details in Section III-B.

A. Basic Concepts

1) Order-Preserving Code (OPC): Order-preserving en-
cryption we used is actually a process of encoding. Given
a set of data as input, we first organize the data into a
binary balanced sorting tree. In such a tree, each node has
a corresponding path P , a height h, and an order-preserving
code c consisting of multiple binary bits.

We denote by γ the root node. The root node’s path is empty
(i.e., P (γ) = []), and its height h(γ) is the height of the tree.
The leaf nodes’ height is 1. For brevity, we refer to a node
with its data value being A as node A. We denote by l the
total length of OPC. Note that l is equal to the total height of
tree, namely, l = h(γ).

Suppose that we need to derive the order-preserving code
for a node A. The process can be divided into two steps.

In the first step, we start from the root node and repeatedly
query the value A against the current node’s value, so that we
can obtain the binary encoding path for A as follows: if A is
less than the current node’s value, the current coded bit is ‘0’
and otherwise ‘1’. These coded bits are appended to P while
we repeatedly query the tree.

In the second step, we append a bit ‘1’ to the current binary
encoding path P , and then determine if the length of the
current binary encoding path value is less than l. If it is, we
append multiple bits of ‘0’ to P until its length reaches l:

c = [P ] 10...0 (1)
Note that in order to minimize the length of OPC and the

query path, thus minimizing the space for storing the order-
preserving codes, we need to construct a binary balanced
sorting tree to minimize the height of the tree.



We use an example to illustrate the process of deriving the
OPC. Suppose that we have a set of 7 data values denoted
by alphabetical letters from A to G. Assume that D < B <
E < A < F < C < G. A binary balanced sorting tree can be
constructed as shown in Fig. 1.

Apparently, the total length of OPC for the nodes is 3,
namely, l = h(A) = 3. Table I enumerates all OPCs for each
node in Fig. 1. More specifically, the root node A’s path value
is P (A) = []. According to Eq. (1), its OPC is c(A) = []100.
The leaf node D’s path is P (D) = [00] (i.e., a concatenation
of the bits on the links along the path from the root A to D).
Therefore, according to Eq. (1), its OPC is c(D) = [00]1.

2) Homomorphic Encryption: Homomorphic encryption
refers to an encryption function that satisfies the following
condition: when performing an operation on encrypted data,
the result (after decryption) is the same as the result obtained
when applying the same operation on the original plaintext
data. More specifically, given two plaintext data x and y,
homomorphic encryption guarantees

D (E (x)� E (y)) = x⊕ y, (2)
where E represents an encryption function, D represents a

decryption function, � and ⊕ represent operational symbols,
respectively. When ⊕ represents the addition operator, the
algorithm is called additive homomorphic encryption; when
⊕ represents multiplication operator, the algorithm is called
multiplicative homomorphic encryption. If⊕ can represent any
operation, the algorithm is fully homomorphic.

Homomorphic encryption allows third-party users to operate
on encrypted data without revealing any data information.
However, homomorphic encryption is computationally expen-
sive. In order to balance the effectiveness and efficiency, we
adopt Paillier semi-homomorphic algorithms instead, and other
semi-homomorphic algorithms are also applicable.

Note that in the encryption process of the Paillier algorithm,
each encryption process generates a large random number for
calculation. Therefore, even with the same plaintext, two dif-
ferent encryption processes will generate different encryption
results due to the fact that they use different random numbers.
This can be used to resist statistical attacks.
B. HOPE Algorithm

Inpsired by the order-preserving code and the homomorphic
encryption, we design the HOPE algorithm as follows. Firstly,
we sort the data stored in a given database and construct a
binary sorting tree. Secondly, we adjust the tree structure to
form a balanced tree. Thirdly, we derive the order-preserving
code for each node in the balanced tree. Lastly, we encrypt
the original data using Paillier homomorphism algorithm. The
entire HOPE algorithm is shown in Algorithm 1.

It is most desirable that Algorithm 1 can inherit the benefits
of both order-preserving code and homomorphic encryption
after we combine them. We prove that combination of the two
methods still maintain the key properties of each method.

Theorem 1: Algorithm 1 is order-preserving.
Proof 1: For any given data a and data b where a ≤ b

and a, b ∈ D, we only need to prove that after application of
Algorithm 1, the condition ea ≤ eb still holds.

Algorithm 1 applies the order-preserving encoding to each
data in the set D and generates ca = OPC(a) and cb = OPC(b).
Apparently, OPC(a) ≤ OPC(b), therefore, ca ≤ cb.

Algorithm 1 HOPE
Input: a set D of data ; encryption key k
Output: a set E(D) of encrypted data
1: D′ = sort(D) //sort all data in D by their sizes.
2: T = form_binary_sort_tree(D′) //Construct a

binary sort tree.
3: T ′ = form_balanced_tree(T ) //Adjusting binary

tree to the balanced state.
4: for d ∈ D do
5: cd = OPC(d) //Derive OPC for each data.
6: end for
7: for d ∈ D do
8: ed = Ek(d) //Apply Paillier algorithm.
9: end for

10: return E(D) = {ed, cd|d ∈ D}

No matter how data changes later, OPC always records the
size of the original data. Therefore, encrypted data can still
compare the numerical order.

Theorem 2: Algorithm 1 achieves addition homomorphism.
Proof 2: We first review the relevant key details of the

Paillier algorithm, as Algorithm 1 is built upon the Paillier
algorithm. The Paillier algorithm consists of three key steps:
key generation, encryption, and decryption.

In the key generation step, two large independent prime
numbers p and q are randomly generated. Generate a ran-
dom integer g, g ∈ Z∗n2 . Calculate n = pq and λ =
lcm (p− 1, q − 1) (the least common multiple of p − 1 and
q−1). Calculate µ by µ =

(
L
(
gλ mod n2

))−1
mod n, where

the function L (x) = (x−1)
n . At the end of this step, we obtain

the public key (n, g), and the private key (λ, µ).
In the encryption step, select a random number r, where

0 < r < n, r ∈ Z∗n2. For any information m to be encrypted,
0 ≤ m < n, we calculate its ciphertext c = E (m, r) =
gmrn mod n2.

In the decryption step, for any ciphertext c to be decrypted,
we can derive its plaintext by calculating m = D(c) =
L
(
cλ mod n2

)
× µ mod n.

We next start to prove that Algorithm 1 maintains the
addition homomorphism, which can be expressed in two forms
(Eq. (3),Eq. (4)). For the first form, we prove that for any given
plaintext data m1,m2, The product of their corresponding
ciphertexts is equal to the encrypted result of the sum of their
plaintexts. In other words:
D(E(m1, r1) · E(m2, r2) mod n

2) = m1 +m2 mod n (3)
Assume that for two given plaintexts m1, m2, the encryption

process selects random numbers r1, r2. Then we have:
left = D(gm1rn1 · gm2rn2 mod n2) mod n

= D(gm1+m2r1r
n
2 mod n2) mod n

= L(g(m1+m2)λrnλ mod n2)µ mod n

= L(g(m1+m2)λ mod n2)L(gλ mod n2)−1 mod n

= L((1 + n)
(m1+m2)λ)L((1 + n)

λ
)−1 mod n

= (m1 +m2)λ mod n2(λ mod n2)−1 mod n

= m1 +m2 mod n



TABLE II: Notations
Symbol Meaning

t a tuple in a given database
t.P the primary key of tuple t
t.A the attribute value of tuple t
N the total number of tuples
n group number
w the watermark
L the length of the watermark
K a hash value used as a key
H a hash algorithm

h1, h2 variables
f the f -th digit of watermark w
p the p-th digit of attribute values of tuples t.A
x, y plaintexts

Dig(T, s)
Dig(·) is a function, T is a BigInteger and s is
an integer, Dig(T,s) returns the t-th digit of T

E(·), D(·) the encryption, decryption function

For the second form, we prove that the product of a
ciphertext with a plaintext raising g will decrypt to the sum
of the corresponding plaintexts. In other words:

D(E(m1, r1) · gm2 mod n2) = m1 +m2 mod n (4)
The proof process is similar to that of Eq. (3). Due to the

space limitation,we skip the proof.

IV. HOPE-L: LOSSLESS DATABASE WATERMARKING IN
HOMOMORPHIC ENCRYPTION DOMAIN

We now present the design of the lossless database water-
marking algorithm in homomorphic encryption domain. First,
we apply order-preserving encryption to allow comparison
on encrypted data directly. Second, we apply homomorphic
encryption to protect data security. Last, in order to keep the
data unchanged after embedding watermark, we design a novel
watermark embedding method, by leveraging the properties
of homomorphism, to achieve lossless database watermark
method in homomorphic encryption domain.

A. Notations
We use a set of notations, as show in Table II, to ease the

description and the formulation of HOPE-L.

B. Watermark Generation
Watermark generation includes two steps. The first step is to

concatenate the database name, table name and user identity.
We refer to the concatenated string as the user fingerprint
information (ID). The second step is to translate the ID string
into a fixed-length hash value using a hash algorithm. We use
the hash value as the watermark w. Note that all state-of-the-
art hash functions can be used to generate the watermark.

C. Watermark Embedding
Once the watermark for a given database is generated, we

start to embed the watermark into the database. We embed
the watermark into the encrypted database (namely, apply
HOPE to encrypt the original plaintext database). Note that
the encrypted database contains encrypted data and OPC.

we use the HOPE-L algorithm, as shown in Algorithm 2, to
embed watermark w into encrypted database. In the algorithm,
we adopt the double hash positioning method during embed-
ding. The whole embedding process can be divided into three

Algorithm 2 Embedding process of HOPE-L
Input: Encrypted database ; Watermarking w ; Key K
Output: Encrypted database embedded watermark w

1: n =
N

L− 1
//Number of watermark in database.

2: for i<N do //Traversing all tuples.
3: h1 = H (ti.P ‖ K)
4: f = h1 mod L //Dig(w, f): The f -th digit of w.
5: h2 = H (K ‖ h1)
6: p = h1 mod 10 //Dig(t.A, p): The p-th digit of the

attribute value A of tuple t.
7: while Dig(t.A, p) 6= Dig(w, f) do
8: t.A = t.A · E(0) //Embed Dig(w, f) to
Dig(t.A, p).

9: end while
10: end for
11: return Encrypted database embedded watermark w

steps. The first step is grouping, in which we calculate the
group number n of the database table according to the length
L of watermark, where n = N

L−1 . Embed as many watermarks
as possible in all tuples to resist database level attacks.

The second step is to determine the watermark and embed-
ding position by using the double hash positioning method.

Assuming that P is not attacked and unchangeable, we can
determine which tuples to embed watermark. We compute the
first hash value on the concatenation of P and K, namely,
h1 = H(ti.P ‖ K), where ‖ means concatenation of two
strings. We then compute f = h1 mod L; we take f -th digit
of w as a watermark to embed in this round.

We then compute the second hash value h2 = H(K ‖ h1),
and obtain the lowest digit of h2 by computing p = h1 mod 10.
We use p to determine the location of watermark embedding.
In other words, we embed watermark Dig(w, f) into the p-th
digit of attribute values of tuples t.A. The double hash method
helps improve the resistance against watermark attacks.

The third step is to leverage the homomorphism properties
in Eq. (3) to finalize lossless watermark embedding. Note that
data encrypted by HOPE satisfies:

E(x) · E(y) = E (x+ y)

If we let y = 0, the product of E(x) and E(0) is equal to
E(x):

E(x) · E(0) = E(x+ 0) = E(x) (5)
We leverage this property to achieve losslessly watermark
embedding. More specifically, when we embed watermark
into attribute values t.A (note that t.A is an encrypted data
by HOPE and owns the homomorphic properties), we can
repeat multiplying t.A and E(0) until the new Dig(t.A, p)
is equal to Dig(w, f). Since the homomorphic encryption
process introduces a nonce, the result of each encryption of
the same number is different. By using the homomorphic
characteristic, we modify a certain digit in the encrypted value
by continuously multiplying E(0), and finally achieve the
purpose of embedding the watermark.

Theorem 3: Algorithm 2 achieves lossless watermark em-
bedding.

Proof 3: HOPE-L completes the watermark embedding
process by multiplying E(0) continuously, which does not



Algorithm 3 Extracting process of HOPE-L
Input: Encrypted database embedded watermark w; Key K
Output: Watermark w

1: n =
N

L− 1
//Number of watermark in database.

2: for i<N do //Traversing all tuples.
3: h1 = H (ti.P ‖ KEY )
4: f = h1 mod L //Extract the f -th digit of w.
5: h2 = H (KEY ‖ h1)
6: p = h1 mod 10 //Extract the p-th digit of the attribute

value A of tuple t.
7: for A ∈ Attributes do
8: W [f ][j] = Dig(t.A, p) //Store all extractions in

a two-dimensional array.
9: end for

10: end for
11: w = voting mechanism(W [][])
12: return watermark w

change the original value. Therefore, no matter how many
times this step has gone through, the newly obtained value
remains unchanged after decryption.

It is worth of noting that relational databases are composed
of tuples; thus it is typically difficult to find a large amount
of redundant space to embed watermarks. However, HOPE-L
can effectively leverage the existing limited redundant space
in relational databases. In HOPE-L, each numerical attribute
can embed watermarks. Vertically, according to the length L
of watermark, we divide all tuples in the database into L
groups, and each bit of watermark is embedded into N

L tuples.
This is first a considerable embedding space. At the horizontal
level, each tuple has multiple attributes (assuming v), the same
watermark bit will be embedded into all attributes. In total, 1
bit watermark will have Nv

L embedding space.

D. Watermark Extraction

The process of watermark extraction, as shown in Algo-
rithm 3, is the revserse of the watermark embedding process. It
will extract a watermark with practical significance losslessly,
which connects the database with the owner, so as to realize
the copyright protection. The watermark extraction requires
the same key as the key used in embedding. During extrac-
tion, every digit extracted from the watermark is determined
according to all the embedded attribute values.

In reality, databases will undergo frequent update opera-
tions, which might cause loss or damage to the watermark. In
order to address this problem, we adopt a voting mechanism
to recover the watermark, namely, the most frequent one is
the final extracted watermark. Recall that during watermark
embedding, we embed the same digit into multiple groups.
Horizontally, watermark is embedded in multiple attributes
of the same tuple. Vertically, all tuples are divided into
several groups, and each group records a watermark. Among
all the candidate extracted results, the value with the most
occurrences are the extracted watermark.

V. IMPLEMENTATION

Implementation Environment. We use the Windows 10
operating system and JVM version 1.8.0 as the development

environment. The system has a 2.50GHz Intel i5 processor
and 8GB main memory. We implement HOPE and HOPE-L
using the Java programming language. The backend database
is the MySQL 5.7 database, where we use the JDBC APIs to
connect to the database.

Implementation Sketch. In our implementation, HOPE
is used for the entire database encryption and decryption
process. After HOPE, all data is encrypted into ciphertext
and datebase is added mark attribute columns to store OPC.
Many SQL languages are no longer executable because of the
ciphertext. Therefore, we also implement the conversion of
the SQL statement so that it can be executed on the encrypted
database and return the encrypted query result. On the database
encrypted by HOPE, SUM, COUNT and some comparison
operations can be performed.

SQL Operations on Encrypted Data. Next we explain
the implementation details of SQL operations on encrypted
database. SQL operations can be divided into two categories:
comparison operations and non-comparison operations.

For SQL statements with non-comparison operations, due to
that fact that HOPE and HOPE-L maintain the homomorphic
property, typical operations such as SUM can be directly
performed. The result is the same as the result obtained when
each encrypted data is retrieved, decrypted, and then applied in
the corresponding operation. Other operations such as COUNT
can also be directly performed on encrypted data as well.

For SQL statements with comparison operations, we have
to locate the corresponding object in the database and set the
comparison object value to a. Due to the nature of the order-
preserving encoding, the root node’s OPC value (converted
into decimal) is 2L−1. Then compare a to 2L−1. If a < 2L−1,
then a is in the left subtree, and the value of the root node is
updated to 2L−1−2L−2; otherwise, if a ≥ 2L−1, meaning that
a is in the right subtree, and the value of the root is updated
to 2L−1 + 2L−2. Repeatedly, a is further compared with the
root value of the subtree. The recursive process continues
until the corresponding value of a is located in the database,
or the maximum value less than a is located. After locating
the corresponding value, it returns the OPC corresponding
to a. In the original SQL statement, a is changed to the
corresponding binary form. Since the order of the data can
be identified by the order of OPC, the original comparison
operation can be converted into an operation comparing a
against the corresponding OPC columns.

VI. EVALUATION

A. Evaluation Methodology and Metrics

HOPE-L is a lossless database watermarking method by
combining homomorphic encryption, order-preserving encryp-
tion and information hiding. We mainly evaluate the advan-
tages of HOPE-L from four perspectives: functional complete-
ness, usability, efficiency, and robustness.

Functional Completeness. All key functions of HOPE-
L, including the HOPE encryption, databased warkmarking
embedding and extraction, can performed smoothly and seam-
lessly in the implemented database environment.

Usability. After applying HOPE-L, the database can still
execute basic SQL queries that are fundamentally supported



by HOPE. Note that such SQL queries are applied to the
encrypted database. We present the result of a typical SQL
query that needs to be compared. The results of other SQL
queries are omitted due to space limitation.

Efficiency. HOPE-L introduces multiple computationally
expensive operations. Such operations mainly include database
encryption, database watermark embedding, database water-
mark extraction, query on encrypted database, and database
decryption. We evaluate the execution time incurred by these
operations, and quantify the time-efficiency of HOPE-L.

Robustness. Robustness is a desirable property of database
watermarking schemes, as normal SQL operations may un-
intentionally interfere with embedded watermarks. More im-
portantly, attackers may use these normal SQL operations to
destroy the watermarks. Therefore, it is vital for database
watermarking schemes to make watermark robust against
common database attacks.

There are 6 common database attacks that cause damage
to database watermark, including the subset deletion attack,
subset addition attack, subset modification attack, conspiracy
attack, hybrid attack, and reversible attack. We use both
analytical and experimental approaches to evaluate the degree
of HOPE-L’s robustness and its resistance against common
attacks on database watermark.

In particular, we define the character error probability CEP
of the extracted the watermark as a metric for evaluating the
robustness. CEP quantifies the ratio of error characters to the
entire watermark, as shown in Eq. (6), where N represents the
number of bits of the watermark extraction error character, and
L represents the length of the watermark.

CEP =
N

L
(6)

B. Completeness

We create a database table named ‘data’ in a database named
‘sqltestdb’. The original plaintext data in the table is illustrated
in Table III, where we show only the first 500 rows of tuples.
Note that for simplicity, the tuples in the table ‘data’ consists
of 5 attributes: ID, x, y, z, total.

TABLE III: Original database
ID x y z total

1 90 90 90 270
2 80 80 80 240
· · · · · · · · · · · · · · ·
500 92 71 68 231

Database Encryption. The process of database encryption
(by applying HOPE-L) involves construction of an OPC for
the numerical columns, by applying the order-preserving en-
cryption function OPC, and encryption of the plaintext data,
by applying the Paillier homomorphic encryption function.

We show the results after encryption in Table IV. Note that
in the tuple data resulted by the homomorphic encryption, each
data becomes a large decimal integer. For brevity, we omit the
digits in the middle of the each large decimal integer.

In Table IV, the upper part consists of the encrypted result
of the original plaintext data, and the lower part consists of
the order-preserving codes for the corresponding data. These
codes correspond to the numerical order of the plaintext data.

TABLE IV: Encrypted database
ID ex ey ez etotal

1 62· · · 5 27· · · 5 19· · · 9 29· · · 8
2 96· · · 3 54· · · 5 58· · · 2 28· · · 4
· · · · · · · · · · · · · · ·
500 55· · · 3 13· · · 3 25· · · 6 19· · · 0
ID cx cy cz ctotal

1 10010000 110000100 111000000 111101000
2 100100100 100000000 101100000 101010000
· · · · · · · · · · · · · · ·
500 110100000 010010000 011011000 100010000

Recall that for any give d ∈ D, ed = Ek(d) where E is the
Paillier encryption function, and that cd = OPC(d).

Watermark Embedding. Recall that in HOPE-L, we apply
the Hash algorithm on the the database name, database table
name and the currently user ID to generate a decimal water-
mark. In this process, the key K is required when applying
the Hash function. The user has to select a specific key K
for the embedding process and this key will also be used in
the process of watermark extraction. Table V illustrates the
encrypted database after watermark embedding.

TABLE V: Encrypted database after embedding watermark
ID x y z total

1 292· · · 6670 404· · · 2507 439· · · 9698 252· · · 3319
2 363· · · 9007 568· · · 1816 581· · · 5642 577· · · 3419
· · · · · · · · · · · · · · ·
500 259· · · 3841 959· · · 3636 429· · · 7367 229· · · 2391

Watermark Extraction and Decryption. The process of
extracting the hidden watermark of the database is opposite to
the watermark embedding process.

By applying the extraction and decryption function in
HOPE-L, we find that the watermark is the same as embedded,
and that the decryption results are consistent with those in
Table III (we omit including the results here as they are
the same as those in Table III). Therefore, we conclude that
the whole database encryption and decryption, watermark
embedding and extraction process does not introduce any
distortion into the database.

Fig. 2: Usability under comparison operation (left: result on
encrypted database, right: result on plaintext database).

C. Usability
HOPE-L allows to perform SQL queries on an encrypted

database, as described in Section V. We use the database
shown in Table III as an exmaple to demonstrate that SQL



1 2 3 4 5 6 7 8 9 10

Experimental count

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
T

im
e

 c
o

n
s
u

m
in

g
(s

)

Encrypting database

Embedding watermark

Extracting watermark

Performing SQL operations

Decrypting database

Fig. 3: Time-efficiency exper-
iment.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Attack ratio

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

C
h

a
ra

c
te

r 
e

rr
o

r 
p

ro
b

a
b

ili
ty

Our method

GADEW

FFADEW

Fig. 4: Results on subset inser-
tion attack.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Attack ratio

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

C
h

a
ra

c
te

r 
e

rr
o

r 
p

ro
b

a
b

ili
ty

Our method

GADEW

FFADEW

Fig. 5: Results on subset dele-
tion attack.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Attack ratio

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

C
h

a
ra

c
te

r 
e

rr
o

r 
p

ro
b

a
b

ili
ty

Our method

GADEW

FFADEW

Fig. 6: Results on subset mod-
ification attack.

queries involving comparison operations can be successfully
performed on an encrypted database. Other opertaions (e.g.,
equivalence matching) can also be performed; however, due
to space limitation, we omit their results.

The example SQL query we use is “select id, x, y,
z from data where y > 95”, which involves a typical
numerical comparison operation. Fig. 2 compares the execu-
tion results of SQL query on the encrypted database (the left
half of Fig. 2) and on the original plaintext database (the right
half of Fig. 2). Both query selects only the tuples in which
the y value is greater than 95. Fig. 2 shows that the query
results are the same. Therefore, HOPE-L still guarantees that
usability of the database.

D. Time-efficiency
HOPE-L involves 5 time-consuming phases, namely,

database encryption, watermark embedding, watermark extrac-
tion, database query, and database decryption. We take 5000
database tuples, run all of the five phases multiple times. The
results are shown in Fig. 3.

As can be seen from Fig. 3, database encryption, embedded
watermarking and database decryption take relatively more
time, but on the whole, the five stages are time-efficient. Both
database encryption and decryption contain homomorphic op-
erations, which take a long time. When embedding watermark,
we keep multiplying the encryption result by the E(0). Con-
stantly doing large integer multiplication operations makes the
overall calculation larger. However, the time consumption is
kept within 16s, the time overhead is small, and the efficiency
is high, which can meet the people’s use requirements.

The extraction operation directly extracts the value of the
corresponding position, and them performs voting analysis.
None of them go through complex operations. The time over-
head of the operation is small, about 0.3s. When performing
a query operation, HOPE-L converts the corresponding query
attribute name to the mark attribute name, and find the OPC
in the mark attribute column, which is similar to the indexed
query. The result shows that average time consumption is less
than 0.1s, and the execution is very efficient.

E. Robustness
There are 6 common database attacks, as described in

Section VI-A. We analyse and evaluate each of them indi-
vidually. We compare HOPE-L against two existing database
watermarking methods: GADEW [22] based on differential
extension and genetic algorithm, and FFADEW [23] based
on differential expansion and firefly algorithm. In the experi-
ments, we adjust the attack ratio to evaluate the character error

probability, by which we are able to quantify the robustness
against attacks. However, only three attacks can cause dam-
age to HOPE-L, namely, subset modification attacks, subset
insertion attacks and subset deletion attacks.

Subset Insertion Attack. When extracting the watermark,
we first sort the tuples according to the primary key of the
database table. The primary key of the newly inserted tuples
are accumulated and sorted later. The original database tuples,
the primary key and key K have not changed. Therefore,
the final watermark can still be extracted correctly. When a
new tuple is inserted and entered into a watermark group,
it may bring a wrong extraction result, but the proportion is
tiny. Only when new tuples are added to the same group,
and the watermark obtained from the extraction digits are
same, the number of tampered watermarks can be higher than
that of original watermark. Further the extraction results will
be affected. Therefore, subset insertion attack has a smaller
impact on watermark in a 100% attack.

The comparison experiments of the three algorithms are
shown in Fig. 4. The two advanced watermarking technologies
have a high probability of error. However, HOPE-L only has a
slight error after reaching the attack percentage of 40% which
also shows that our method is robust.

Subset Deletion Attack. Subset deletion attacks can be
divided into two types: horizontal attack and vertical attack,
where the attacker may randomly delete some rows (horizontal
attack) or columns (vertical attack) of the database.

In the vertical attack experiments, we vary the attack
ratio from 0% to 90%. We randomly delete database tuple
information and compute the CEP of the extracted water-
mark. Random deletion of the tuples can directly delete some
watermarks. The comparison results are shown in Fig. 5. We
observe that when the deletion ratio is less than 30%, the
watermark of HOPE-L can be extracted correctly. Then, as the
ratio increases, CEP is growing substantially, but our method
still performs better than GADEW and FFADEW in deletion
scenario.

In the horizontal attack experiments, there are four attribute
columns in the experiment database. After HOPE, there are
four new attribute columns for OPC, which called mark
attribute. Any mark attribute column is deleted without any
influence (these columns don’t contain the watermark). Any
original attribute column is deleted, only a quarter of wa-
termark copy is deleted, and other columns still retain com-
plete watermark. Thus, randomly deleting columns in original
database, it has little effect on the extraction of watermark.

Subset Modification Attack. As with the previous two



experiments, we vary the attack ratio to quantify the impacts
of this attack. The results are shown in Fig. 6. We observe
that when the attack ratio is within 20%, no matter how the
data is modified, there is no error when extracting watermarks.
We further investigate the details, which shows that the same
watermark has been embedded 80 times in total. After the
subset modification attack, the information extraction of indi-
vidual watermark bits is reduced to 62/80, meaning that 18 bits
of information has been tampered. However, after the voting
mechanism, there is no bit error in the extracted watermark,
and CEP is 0. Until the attack ratio of modified tuple reaches
30%, the error occurs again and CEP increases to 0.01.

Under the modification attack of these proportions, we
test the CEP of extracting watermark and We also make
comparisons against the two existing algorithms, GADEW
and FFADEW, in Fig. 6. When the attack ratio of these two
algorithms reaches 30%, CEP has a significant growth. The
red broken line is the experimental result of HOPE-L , When
the attack rate reaches 90%, CEP is still less than 0.1. HOPE-
L is more robust than the two existing algorithms obviously.

Conspiracy attack. Due to the indistinguishability of ci-
phertext in homomorphic encryption, the two HOPE encryp-
tion results of the same data are different. After encrypting
the same database and watermark, there are two completely
different databases, which cannot be statistically analyzed.

hybrid attack. Although there are similar databases, they
uses different keys during encryption. A hybrid database will
be chaotic, and it is difficult to get meaningful watermark
information. At the same time, it is hard to obtain meaningful
data through decryption. Therefore, it is meaningless for
attackers to recombine databases.

Reversible attack. The watermark of HOPE-L is generated
by hash algorithm of database information, which can authen-
ticate copyright ownership. Therefore, random watermark by
reversible attack has no practical significance.

VII. CONCLUSIONS

In this paper, we propose and implement HOPE-L, a lossless
database watermarking method in homomorphic encryption
domain, by combining database encryption and information
hiding technologies. HOPE-L is the first lossless database
watermarking method by combining homomorphic encryption,
order-preserving encryption and information hiding. HOPE-
L can protect the privacy and copyright of database content
simultaneously. The watermark can authenticate the copyright,
and the recipient can recover the original database without
loss. The experimental results and analysis show that HOPE-
L has more embedding space and no distortion. The embedded
watermark has strong robustness, and the whole operation
process is time-efficient. In particular, we compare HOPE-L
against existing reversible database watermarking algorithms
(GADEW and FFADEW). The results show that HOPE-L
is superior to both algorithms in robustness and can resist
common database attacks.

REFERENCES

[1] Y. C. Liu, Y. T. Ma, H. S. Zhang, D. Y. Li, and G. S. Chen, “A method
for trust management in cloud computing: Data coloring by cloud
watermarking,” International Journal of Automation and Computing,
vol. 8, no. 3, pp. 280–285, 2011.

[2] H. Hacigumus, B. Iyer, and S. Mehrotra, “Providing database as a
service,” in Proceedings 18th International Conference on Data En-
gineering, 2002.

[3] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On databanks and
privacy homomorphism,” Foundations of Secure Computation, 1978.

[4] T. Elgamal, “A public key cryptosystem and a signature scheme based on
discrete logarithms,” IEEE Transactions on Information Theory, vol. 31,
no. 4, pp. 469–472, 1985.

[5] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Advances in Cryptology - EUROCRYPT ’99, Inter-
national Conference on the Theory and Application of Cryptographic
Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding, 1999.

[6] C. Gentry, “Fully homomorphic encryption using ideal lattices,” Pro-
ceedings of the Annual ACM Symposium on Theory of Computing, vol. 9,
pp. 169–178, 01 2009.

[7] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order preserving
encryption for numeric data,” in Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’04.
New York, NY, USA: Association for Computing Machinery, 2004, p.
563–574.

[8] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order-preserving
symmetric encryption,” in International Conference on Advances in
Cryptology-eurocrypt, 2009.

[9] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“Cryptdb: Protecting confidentiality with encrypted query processing,”
in Acm Symposium on Operating Systems Principles, 2011.

[10] R. A. Popa, F. H. Li, and N. Zeldovich, “An ideal-security protocol for
order-preserving encoding,” in Security and Privacy (SP), 2013 IEEE
Symposium on, 2013.

[11] M. Goljan, J. J. Fridrich, and R. Du, “Distortion-free data embedding
for images,” in Information Hiding, 4th International Workshop, IHW
2001, Pittsburgh, PA, USA, April 25-27, 2001, Proceedings, 2001.

[12] J. Tian, “Reversible data embedding using a difference expansion,” IEEE
Transactions on Circuits & Systems for Video Technology, vol. 13, no. 8,
pp. 890–896, 2003.

[13] A. V. Leest, M. V. D. Veen, and F. Bruekers, “Reversible image
watermarking,” in Image Processing, 2003. ICIP 2003. Proceedings.
2003 International Conference on, 2003.

[14] D. M. Thodi and J. J. Rodriguez, “Prediction-error based reversible
watermarking,” in Image Processing, 2004. ICIP ’04. 2004 International
Conference on, 2004.

[15] G. Xuan, J. Zhu, J. Chen, Y. Q. Shi, Z. Ni, and W. Su, “Distortionless
data hiding based on integer wavelet transform,” Electronics Letters,
vol. 38, no. 25, pp. 1646–1648, 2003.

[16] R. Agrawal and J. Kiernan, “Chapter 15 - watermarking relational
databases,” in VLDB ’02: Proceedings of the 28th International Con-
ference on Very Large Databases, P. A. Bernstein, Y. E. Ioannidis,
R. Ramakrishnan, and D. Papadias, Eds. San Francisco: Morgan
Kaufmann, 2002, pp. 155 – 166.

[17] R. Sion, M. Atallah, and S. Prabhakar, “Rights protection for relational
data,” Knowledge and Data Engineering, IEEE Transactions on, vol. 16,
pp. 1509– 1525, 01 2005.

[18] R. Halder and A. Cortesi, “A persistent public watermarking of relational
databases,” in Information Systems Security-international Conference,
2010.

[19] M. Shehab, E. Bertino, and A. Ghafoor, “Watermarking relational
databases using optimization-based techniques,” IEEE Transactions on
Knowledge and Data Engineering, vol. 20, no. 1, pp. 116–129, 2007.

[20] D. Gross-Amblard, “Query-preserving watermarking of relational
databases and xml documents,” Acm Transactions on Database Systems,
vol. 36, no. 1, pp. 1–24, 2011.

[21] Y. Zhang, B. Yang, and X. M. Niu, “Reversible watermarking for
relational database authentication,” Journal of compute, vol. 17, no. 2,
pp. 59–65, 2006.

[22] G. Gupta and J. Pieprzyk, “Reversible and blind database watermarking
using difference expansion,” in Proceedings of the 1st International
Conference on Forensic Applications and Techniques in Telecommu-
nications, Information, and Multimedia and Workshop, M. Sorell, Ed.
Belgium: ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2008, pp. 1–6.

[23] Imamoglu, Mustafa, Bilgehan, Ulutas, Guzin, and Mustafa, “A new
reversible database watermarking approach with firefly optimization
algorithm,” Mathematical Problems in Engineering: Theory, Methods
and Applications, vol. 2017, no. Pt.3, p. 1387375.1, 2017.

[24] X. S. Jun, H. J. Yong, and J. University, “Database authentication
watermarking algorithm in order preserving encrypted domain,” Journal
of Software, 2018.


