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Abstract

Network virtualization provides the ability to run multiple concurrent virtual networks over a shared sub-
strate. However, it is challenging to design such a platform to host multiple heterogenous and often highly
customized virtual networks. Not only high degree of flexibility is desired for virtual networks to customize
their functions, fast packet forwarding is also required. This paper presents PdP, a flexible network virtual-
ization platform capable of achieving high speed packet forwarding. A PdP node has multiple machines to
perform packet processing for virtual networks hosted in the system. To forward packets in high speed, the
data plane of a virtual network in PdP can be allocated with multiple forwarding machines to process packet
in parallel. Furthermore, a virtual network in PdP has the freedom to be fully customized. Both the control
plane and the data plane of the virtual network run in virtual machines so as to be isolated from other
virtual networks. We have built a proof-of-concept prototyping PdP platform using off-the-shelf commodity
hardware and open source software. The performance evaluation results show that our system can closely
match the best-known packet forwarding speed of software router running in commodity hardware.
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1. Introduction

Network virtualization provides a powerful way
to facilitate testing and deploying network innova-
tions over a shared substrate. Currently the net-
work research community is focusing on building
a shared, wide-area experimental platform to sup-
port a broad range of research in networking and
distributed systems. To that end, and more im-
portantly, toward the long term goal of providing
a global infrastructure in which multiple virtual
networks, each customized to a specific purpose,
could run concurrently, the virtual network sub-
strate must have four key properties: (1) isolation
between virtual networks to minimize the interfer-
ence among them; (2) flexibility to customize the
virtual networks and implement various customized
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functionalities in the virtual networks; (3) high-
speed data plane packet forwarding performance
to facilitate realistic experiments and attract long
term applications; and (4) low cost in building that
platform to lower the barrier of wide-area deploy-
ment.

The challenge of building such a network virtual-
ization substrate is that the four properties, i.e., iso-
lation, flexibility, high performance, and low cost,
are often tightly coupled issues in system design, so
that we usually have to compromise one in order to
improve another one. For example, special purpose
hardware can forward packets faster but it usually
costs significantly more than commodity hardware.
Another dilemma is that in order to achieve better
performance, the data plane functions of a virtual
network should have direct access to the hardware
or run in the privileged domain of the hardware.
However, opening low-level and close-to hardware
programming interfaces usually results in poor iso-
lation among virtual networks. A buggy function
implemented in one virtual network can crash the
whole system, e.g., shut down a machine hosting
multiple virtual networks. Or a malicious user of
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the shared platform can easily affect other virtual
networks residing at the same substrate. In order
to avoid such situation and still offer the desired
performance benefits, prior works [2, 3] propose to
design and implement a set of well-tested build-
ing blocks that can have direct access to the hard-
ware or run in the privileged domain of the hard-
ware. Virtual networks can assemble those building
blocks to realize their desired functions. However,
that compromises the flexibility because the virtual
networks will be limited to the set of provided build-
ing blocks.
This paper presents PdP, a new network virtual-

ization platform built from cost-efficient commod-
ity hardware. In designing PdP, we put flexibility
as the first priority goal and try to provide each
virtual network the freedom of fully customizing
both the control plane and the data plane. The
basic ideas behind PdP are two-fold. First, both
the control plane and the data plane functions of a
virtual network hosted in PdP run in virtual ma-
chines, so as to provide the isolation among virtual
networks and the flexibility to customize each vir-
tual network. Second, there are multiple physical
machines serving as the “forwarding engines” in a
PdP node. To achieve high speed packet process-
ing, the data plane of a virtual network can have
multiple virtual machines (hosted in multiple for-
warding engines) running in parallel to perform its
data plane packet forwarding functions.
Recently, a few special purpose hardware based

network virtualization systems have appeared [4,
5, 3]. Although those systems provide superior
packet forwarding performance, they usually are
not as flexible as the systems running software
routers in the commodity hardware. We can com-
bine PdP with those special purpose hardware-
based platforms, in which case PdP complements
those systems. In other words, in such a hybrid
platform, the PdP subsystem supports highly cus-
tomized virtual network services; while the special
purpose hardware-based subsystem supports vir-
tual network services that can be composed with
the set of building blocks provided by the special
purpose hardware subsystem.
Although the basic idea behind PdP is promising,

implementing this platform is challenging. First,
for a PdP node, it is important to ensure that the
packet processing performance scales with the num-
ber of forwarding engines. The machine coordinat-
ing the multiple forwarding engines should not be-
come the bottleneck, especially when the coordina-

tion function is implemented by software running
in commodity hardware. Second, parallel packet
forwarding by multiple forwarding engines can lead
to out-of-order packets and thereby result in de-
graded performance for the up-layer applications,
such as those applications using TCP. Therefore, it
is important to reduce the amount of out-of-order
packets.
In summary, we make three main contributions

in this paper. (1) To the best of our knowledge,
PdP is the first commodity hardware-based net-
work virtualization platform providing both high
degree of customization and viable data process-
ing performance. (2) PdP is the first platform
demonstrating the feasibility of scale the packet for-
warding speed by parallelizing packet processing in
cost efficient commodity hardware. (3) We have
built a proof-of-concept PdP node prototype using
off-the-shelf commodity hardware and open source
software. Our experiment results show that PdP
can closely match the best-known packet forward-
ing speed of software router running in commodity
hardware.
The rest of this paper is organized as follows.

Section 2 presents related work on network virtu-
alization platforms. Section 3 details the design of
PdP. A prototyping implementation of PdP is pre-
sented in section 4. Section 5 presents the exper-
iment evaluation results. Section 6 concludes this
paper and projects our future work.

2. Related Work

Several network virtualization platforms have
been proposed recently. This section provides a
brief overview of the existing systems, including
both the commodity hardware-based systems and
special purpose hardware-based systems.

2.1. Commodity Hardware-based Systems

VINI [6, 7] is a flexible platform that has been de-
ployed in several locations cross the Internet. VINI
adopts operating system level virtualization [8] to
virtualize a physical server. The virtual routers
(virtual machines hosted in one or more physical
nodes) are connected by UDP tunnels to build an
overlay virtual network. A virtual network hosted
in VINI can customize its control plane and data
plane with little interference to other virtual net-
works. However, the packet forwarding in VINI is
slow because the virtual network data forwarding
function runs in OS user mode.
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Trellis [9, 10] also adopts OS level virtualization
and the virtual routers are connected by tunnels.
A virtual router in Trellis can match the native OS
kernel forwarding speed. However, the forwarding
performance improvement of Trellis cannot bene-
fit a virtual network that needs to customize its
data plane, in which case its packet processing func-
tion has to run in OS user mode and that virtual
network loses the performance benefit provided by
Trellis.
The VRouter project [11] uses Xen [12] to vir-

tualize a physical machine. Xen adopts the so-
called paravirtualization [13]. A virtual router can
run in either privileged or unprivileged domains
of Xen. Running a virtual router in unprivileged
domain has unacceptable forwarding performance.
Yet, by directly mapping the physical NICs to
the virtual routers, an unprivileged domain vir-
tual router can match the native kernel forward-
ing speed [14]. However, the number of virtual
routers would be limited by the number of avail-
able NICs in a server. Using NICs with virtual
queues and hardware packet classification capabil-
ity [15] alleviates this problem, but the cost of the
NICs would be considerably higher. More impor-
tantly, the packet classification in NIC hardware
usually classifies packets according to their desti-
nation MAC addresses, but wide-area deployable
platforms, like VINI and Trellis, use other fields in
the packet header to indicate which virtual network
a packet belongs to.
The source code merging scheme [2] provides a

set of function elements which can run in the privi-
leged domain of underlying hardware. As a result, a
virtual network is limited to assemble its data plane
using the provided elements.

2.2. Special Purpose Hardware-based Systems

The Supercharging PlanetLab Platform(SPP) [3]
separates the control plane and data plane of a vir-
tual network and uses network processor (NP) in
virtual network data plane for high speed packet
forwarding. SPP opens only the programming
interface to control the TCAM hardware in NP.
Opening close to hardware programming interface
might be a security hole exposed to malicious or
reckless users.
There are also platforms built from NetF-

PGA [16], like those presented in [5, 4]. Although
the NetFPGA system facilitates line speed packet
forwarding, the platform proposed in [5] cannot
support customizing the virtual network data plane

function. In the other platform [4], a virtual net-
work can customize its data plane, but the isola-
tion between virtual networks is not good. The
NetFPGA board hosting the data planes of mul-
tiple virtual networks needs to be shutdown for a
short period of time when updating the data plane
functions of one virtual network.

Compared with other network virtualization
platforms, PdP provides good isolation and flex-
ibility with little packet forwarding performance
compromise in commodity hardware. The existing
practice and experience of building and deploying
network virtualization platforms give us many in-
spirations in designing PdP. PdP resembles the SPP
platform in separating the control plane and the
data plane of a virtual network. The deployment
experience of VINI and Trellis motivates us to open
only the unprivileged domain to virtual networks in
PdP. The PC cluster router proposed in [17] inspires
us to take advantage of parallization for better data
plane packet forwarding performance.

3. PdP: a Network Virtualization Substrate

with Parallelized Data Plane

In this section, we present the basic ideas and the
detailed design of PdP. When describing PdP, we
also point out possible alternative design options
in building certain components of PdP and discuss
their pros and cons.

3.1. Basic Ideas

The primary design goal of PdP is to provide
maximum flexibility and isolation to virtual net-
works with minimal compromise in packet process-
ing performance. For a virtual router hosted in a
PdP node, both its control plane and data plane
run in virtual machines (which are also often called
guest machines in this paper). The virtualization
mechanism that slices a host machine into one or
more guest machines, provides the necessary isola-
tion among different virtual networks. Running the
control plane and the data plane in guest machines
has certain overhead. Although this overhead may
not be an issue for the control plane of a virtual net-
work, it can significantly degrade its data plane per-
formance, because the packet processing functions
run in the unprivileged domain of the underlying
hardware. To compensate the performance degra-
dation of running the data plane in guest machine,
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a virtual router in PdP can have multiple guest ma-
chines, which run in multiple host machines, to per-
form its packet processing task. With the parallel
processing in multiple machines, a virtual network
in PdP can achieve better data plane performance
than the virtual networks in other platforms with
similar degree of isolation and flexibility. In other
words, PdP trades cost (having multiple physical
machines to perform the data plane tasks of vir-
tual networks) for better flexibility, isolation, and
performance. Since PdP is built from cost-efficient
commodity hardware and open source software, the
cost increasing should not be substantial.

3.2. PdP Node Architecture

A PdP node consists of a cluster of machines.
One machine is dedicated to host the control planes
of the virtual routers in the PdP node. We call
it the management host (denoted by MH). There
are multiple machines running the data plane func-
tions of the virtual routers in the PdP node. Those
data forwarding machines are the forwarding en-
gines (FEs). The data forwarding in multiple FEs is
coordinated by the multiplexer/demultiplexer ma-
chine (denoted by MD).
Both the MH and the FEs are sliced into

guest machines using OS level virtualization mech-
anism [8]. The guest machines hosted in the MH
and the FE are called MH guest machines and FE
guest machines, respectively. We choose OS level
virtualization because it is efficient and provides
good isolation among guest machines. For a virtual
router hosted in a PdP node, its control plane, such
as the routing process, runs inside an MH guest
machine; its data plane packet forwarding function
runs in the FE guest machines. The number of
FE guest machines serving for a virtual router and
the amount of processing power allocated to each
FE guest machine depend on how much packet pro-
cessing power that virtual network claims and the
available resources in the PdP node.
The MD machine coordinates the FE guest ma-

chines of the virtual routers hosted in a PdP node.
Generally saying, the MD distributes all incoming
packets to FEs, merges the packets processed by
the FEs, and sends the processed packets out to
other PdP nodes. For example, once receiving a
packet, the MD first decides which virtual network
that packet belongs to. Then the MD sends that
packet to the corresponding FE guest machines for
processing, such as address lookup and traffic shap-
ing. After a packet is processed by the FE guest ma-

chine, it is returned to the MD. At that time, the
packet is tagged with necessary information (e.g.,
the outgoing interface) for the MD to decide how
to dispatch it out.

…...
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Figure 1: A PdP node example. The dashed arrows repre-
sent incoming, unprocessed packets. The solid arrows repre-
sent outgoing, processed packets.

We show an example of the PdP node in Fig-
ure 1. It hosts three virtual routers serving for
three virtual networks, i.e., red, blue, and green.
The MH hosts three guest machines and each runs
the control plane of a virtual router. Packets be-
longing to the three virtual networks are classified
and distributed from the MD to the FE guest ma-
chines. The red and blue virtual networks require
little packets processing power, so that one FE is
sliced into two FE guest machines, one assigned
to the red virtual router and the other assigned to
the blue virtual router. The green network requires
much more processing power so two FE guest ma-
chines, each has all the processing power of one FE,
are assigned to the green network. After packets
being processed, they are returned to the MD with
necessary tags and the MD dispatches those packets
out according to those tags.

3.3. Multiplexer and Demultiplexer

The basic functions of the MD machine is to clas-
sify incoming packets (from virtual routers in other
PdP nodes) to FEs and dispatch processed packets
out (to virtual router in other PdP nodes). Those
two functions are implemented by the packet clas-
sifier and the packet dispatcher. Figure 2 shows the
internal structure of a MD machine.
For each incoming packet, the packet classifier

first checks whether the packet belongs to a virtual
network (e.g., the packet is encapsulated in UDP if
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Figure 2: The MD machine.

the virtual links are UDP tunnels between different
PdP nodes). If it does, the packet classifier further
finds out which virtual network that packet belongs
to and sends it to the corresponding FE guest ma-
chine. The MD has a small table that associates
the FE guest machines to the virtual networks. The
association between the virtual networks and their
FE guest machines should be established in the MD
when creating the virtual networks.

After a packet is processed by the FE guest ma-
chine and sent back to the MD, it should have been
properly tagged with information like which one is
the outgoing interface. The tags can be some fields
in the header of a lightweight encapsulation mech-
anism used locally between the MD and the FEs.
The packet dispatcher checks the tags of the packet
and sends the packet out according to the tags.

The MD machine can be a potential bottleneck
of a PdP node that constrains it from achieving
high packet forwarding speed. We adopt two ap-
proaches to speedup the packet processing in the
MD machine. First, the packet classifier and the
packet dispatcher functions run in the privileged
domain of the MD machine to have minimal over-
head in processing packets. Second, the MD ma-
chine does not perform any unnecessary “deep” in-
spections of the packets. Instead, all packets are
simply classified to the FEs based on some field in
the header (e.g., UDP port). The FEs perform the
time-consuming tasks in packet forwarding, such as
IP address lookup.

Although we use software to implement the
packet classifier and the packet dispatcher func-
tions by software, those two functions can be im-
plemented by special purpose hardware such as net-
work processor or NetFPGA to achieve better per-
formance. Because the MD machine is not open
to virtual networks for customization and program-

ming, using special purpose hardware to implement
the MD will not jeopardize the flexibility of PdP.

3.4. Forwarding Engine

The next important component in a PdP node is
the FE. In this section we first present the design
of the FE. Then we study the resource allocation
problem of slicing the FEs and assigning the FE
guest machines to virtual routers hosted in a PdP
node.

3.4.1. Structure of FE

Figure 3 depicts the structure of an FE. PdP
adopt OS level virtualization to slice the FEs. The
data plane function of a virtual router hosted in
PdP runs in one or more FE guest machines. For
an incoming packet, the MD classifies it and sends
the packet to an FE guest machine for further pro-
cessing. The packet processing function running
inside the FE guest machine processes the packet,
e.g., performing address lookup, encapsulating the
packet with proper headers, and labels the pro-
cessed packet with a set of simple tags. The tags
should specify which one is the outgoing interface
when the MD dispatches that packet, so that the
MD can efficiently send the packet out according to
the tags.
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Figure 3: The structure of a Forwarding Engine (FE).

PdP runs the packet processing function inside
the FE guest machines, so that the virtualization
mechanism provides the isolation among different
virtual routers. An alternative design option, which
achieves better packet forwarding performance, is
letting the packet processing function of a virtual
router run in the privileged domain of the FEs,
if that virtual router exclusively uses those FEs.
However, opening the privileged domain of the FEs
could lead to more management overhead because
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in some situations the administrator of a PdP sys-
tem must be involved to resolve the problems. For
example, a buggy packet processing function hangs
the FEs serving for a virtual network, so that the
administrator of the PdP system must hard reboot
those machines.

3.4.2. Allocating FEs to Virtual Networks

How to allocate the processing power of the FEs
is of importance. The parallel packet processing
causes out-of-order packets. Bad FE allocation
strategy can exacerbate the situation, which leads
to greater impact to the performance of the up-layer
protocols such as TCP.

vnet2 vnet3vnet1

FE1 FE2 FE3

(a)

vnet1 vnet2 vnet3

FE1 FE2 FE3

(b)

Figure 4: vnet1 ∼ vnet3 get equal processing power in (a)
and (b). In (a) there are two FE guest machines, hosted
by two FEs, serving for vnet2 and vnet3. In (b) vnet2 (and
vnet3) has one FE guest machine, which exclusively uses the
processing power of an FE.

Informally, the basic principle should be not slic-
ing the FEs too finely, in order to avoid such a
situation that there are a lot of “fragmented” FE
guest machines serving for the data plane of a vir-
tual router. For example, suppose there are three
FEs (FE1 ∼ FE3) and they are allocated to three
virtual networks (vnet1 ∼ vnet3). Slicing and al-
locating the FEs according to either Figure 4(a) or
Figure 4(b) satisfies the processing power require-
ment of both virtual networks. However, the slicing
of FEs as in Figure 4(a) may cause vnet2 and vnet3

to have lots of out-of-order packets. Slicing the FEs
as shown in Figure 4(b) is a better choice, because
all three virtual networks have their required pro-
cessing power and they have less out-of-order pack-
ets.

In order to minimize the impact of out-of-order
packets, we should assign minimal number of FE
guest machines to serve for the data plane of a

Procedure SliceAlloc(R)
Input: R, the processing power requirement of a

virtual network vnet.
Output: The best fit slicing and assignment of

FEs to satisfy the requirement of vnet.
r=R%C;1

k=(R− r)/C;2

for i = 0; i < k; i++ do3

find an idle FE, create one guest machine with4

C processing power in it, assign that guest
machine to vnet;

FE∗ = null;5

min = BIG NUM ;6

for FEi∈ all FEs and availablePower(FEi)>r7

do

if (availablePower(FEi)− r) < min then8

min = availablePower(FEi)− r;9

FE∗ = FEi;10

create a guest machine in FE∗ with processing11

power r and assign it to vnet;

Figure 5: A best fit heuristic algorithm used in allocating the
processing power of the FEs.

virtual router (the total packet processing power
should be enough to satisfy the requirement of the
virtual network). Suppose there are n virtual net-
works (vnet1 ∼ vnetn) and vneti requires Ri pro-
cessing power. Also suppose we have enough FEs
in the PdP node and the processing power of each
FE is C. If Ri = kC + ri, (ri < C), we should first
allocate k FE guest machines to vneti and each of
them has all the processing power of one FE. Then
finding the minimum number of FEs to “pack” the
n remainders (r1 ∼ rn) is the classic bin packing
problem, which is known to be NP-hard [18]. Con-
sidering that new virtual router are created and old
ones are removed from a PdP node, we develop an
algorithm as shown in Figure 5 to decide the slic-
ing and allocation of FEs in a PdP node. This al-
gorithm adopts a heuristic similar to the “best fit”
heuristic used in solving the bin packing problem.

3.5. Management Host

The MH is sliced into guest machines as well and
each guest machine runs the control plane of a vir-
tual router, as depicted in Figure 6.

3.5.1. Handling routing update messages

For a packet containing the control plane mes-
sage of a virtual router, it is still first sent to one of
the FE guest machine of that virtual router by the
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Figure 6: The management host. In this example, the MH
hosts two guest machines, which run the control planes of
two virtual routers. The arrows represent the routing update
messages and control messages of those virtual networks.

MD. The FE guest machine inspects the packet and
finds out that the packet’s destination is the virtual
router itself. Then the FE guest machine labels the
packet as control message and sends it back to the
MD. According to the tags of that packet, the MD
can send the packet to the MH guest machine run-
ning the control plane of that virtual router. For a
packet sent out by the control plane of a virtual net-
work, the MH should properly encapsulate it and
tags that packet with necessary information, like
which one is the outgoing interface. Therefore, the
MD can send the packet out according to the tags.

3.5.2. Updating the data plane FIB in FE

PdP adopts multicast in updating the data plane
FIB of a virtual router, because one virtual router
in PdP may have multiple FE guest machines serv-
ing as its data plane. Each virtual router hosted in
a PdP node is locally assigned a unique multicast
address addrm. The FE guest machines of the same
virtual router join multicast group addrm. The con-
trol plane of a virtual router issues new routes (and
control commands) to multicast address addrm, so
that the FIB in all its FE guest machines will be
updated.

4. Implementation

We have built a prototyping PdP system as
shown in Figure 7. All machines are PCs running
Linux operating system. For simplicity, we imple-
ment the MD and the MH within the same machine.
This prototyping PdP node has two external phys-
ical interfaces, A and B. We assign two virtual
interfaces to each virtual router hosted in this PdP

node, one mapped to each physical interface1, and
each virtual router forwards packet between its two
interfaces. The EtherType field in the MAC header
is redefined inside the PdP node as the “tag” to in-
dicate the outgoing interface of a processed packet,
or whether a processed packet contains control mes-
sage.

MH & MD

A B

forwarding 

engine

forwarding 

engine

forwarding 

engine

Gbit Ethernet switch

…...

C

Figure 7: A PdP prototyping system.

The packet classifier and packet dispatcher func-
tions are implemented using kernel mode Click [19].
The packet classifier classifies packets belonging to
different virtual networks based on the UDP port
numbers (the virtual links in a virtual network are
UDP tunnels). The packet processing function,
which runs in the FE guest machines, processes
each packet, encapsulates the packet with proper
headers, labels the packet with a tag to indicate
the outgoing interface, and sends it back to the
MD. According to the tag labeled to the packet,
the packet dispatcher in the MD sends that packet
out via either interface A or interface B, or sends to
the MH guest machine running the virtual router
control plane.

We use OpenVZ [20] to slice the MH and the FEs.
OpenVZ is an OS level virtualization scheme used
in several network virtualization platforms [4, 5, 21,
1]. The packet processing function of each virtual
network is implemented by user mode Click running
in the FE guest machines. The control plane of each
virtual network runs the XORP routing protocol
suite [22, 23].

The original user mode Click software router im-
plemented a control interface by which one can con-
nect to the software router via telnet and issue com-
mands to control the router, such as changing the
FIB. We patched its source code so that Click opens

1Note that this is for testing and prototyping purpose. In
reality, each virtual router hosted by the PdP node can have
any number of virtual interfaces.
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a UDP port and binds that port to a multicast ad-
dress. Hence, the Click control commands issued
to that multicast address can be received and pro-
cessed by Click.
The XORP routing protocol suite has a For-

warding Engine Abstraction (FEA) layer to sup-
port multiple kinds of underlying forwarding en-
gines, such as the native operating system kernel
forwarding and Click forwarding. In its current sta-
ble version (V1.6), however, XORP does not sup-
port using Click running in a remote host as the
forwarding engine. We patched the XORP source
code so that XORP can populate the FIB of mul-
tiple user mode Click instances running in remote
hosts by issuing Click control command via multi-
cast.

5. Experiment Evaluation

This section evaluates both the data plane and
the control plane performance of virtual networks
hosted in PdP, using the prototyping PdP node
we have implemented. We focus on IP in evaluat-
ing PdP. The basic conclusions of our experiments
should apply to virtual networks using protocols
other than TCP/IP.

5.1. Experiment Setting and Overview

Figure 8 shows the testbed in our experiments.
Two Linux PCs are connected by the router ma-
chine via Gbit Ethernet links. The router ma-
chine is a virtual router hosted in PdP and we
can configure this virtual router to use one, two,
or three FEs to forward its packets. All machines
are workstation-class PCs equipped with 2.4 ∼ 3.0
GHz Pentium 4 CPU, 1G RAM, and Intel Gbit Eth-
ernet NICs. We enable the NAPI mode [24] in the
native Linux NIC driver to avoid the receive livelock
effect [25].

Source Router Destination
A B

Figure 8: The experiment testbed.

In the following, we first evaluate PdP’s data
plane performance, including the packet forward-
ing performance of both UDP and TCP traffic. We
also test the the delay for a packet to traverse a PdP
node. For the control plane, we first test how fast

the control plane of a PdP virtual router can pop-
ulate its data plane FIB (Forwarding Information
Base) in the remote FE guest machines. Then we
study the CPU overhead of populating the FIB in
FE guest machines and how that affects the packet
forwarding performance of PdP virtual router.

5.2. Data Plane Performance

In evaluating the data plane performance of PdP,
we compare PdP with user mode Click software
router and kernel mode Click software router. The
user mode Click provides the baseline performance
of network virtualization platforms running soft-
ware router in the guest machine user mode, such as
the VINI platform; the performance of kernel mode
Click provides the baseline performance of the best
known software router running in commodity hard-
ware.
The purpose of our experiments is to show that

the forwarding speed trend of PdP scales with the
number of FEs. We can expect that faster speed
can be achieved if more powerful hardware, such as
server-class PCs, are used in our experiments.

5.2.1. UDP Forwarding Speed

We first use UDP traffic to test the raw packet
forwarding speed of PdP. In the testbed shown
in Figure 8, the source host runs the udpgen tool
shipped with Click to send UDP packets to the des-
tination host. The udpgen tool runs in OS kernel
mode and can send out packets at very high speed.
The destination host runs the udpcount tool in Click
to count the number of received UDP packets. A
PdP virtual router forwards the packets between
the source and destination hosts.
We had the experiments in which multiple con-

current virtual networks are created in the PdP
node. The aggregate forwarding speed of the PdP
node, when the number of virtual routers varies
from one to three, does not show noticeable dif-
ference. Hence, we present only the results where
only one virtual router is hosted in the PdP node.
If it is not stated explicitly, each FE hosts only one
guest machine and the each FE guest machine has
all the processing power of the FE.

Forwarding with small FIB: We set the FIB of
the virtual router hosted in the PdP node to have
only two entries, which point to the source host
and the destination host, respectively. The source
host sends out 64-byte UDP packets at various rates
ranging from 10K packets per second (pps) to 400K
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pps. The forwarding speed of the router machine,
when it is a PdP virtual router, user mode Click
router, or kernel mode Click router, is plotted in
Figure 9. The packet loss rate at the router machine
is plotted in Figure 10.
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Figure 9: 64-byte UDP packet forwarding speed.

As shown in Figure 9 and Figure 10, when the in-
put speed is lower than certain threshold, the for-
warding speed always increases proportionally as
input speed increases and the loss rate remains to
be close to zero. The peak forwarding speed of PdP
virtual router is proportional to the number of FEs
and the peak speed of PdP virtual router with three
FEs matches the peak speed of kernel mode Click.
After the input speed exceeds the threshold, the
packet loss rate becomes larger and the forwarding
speed becomes stable.
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Figure 10: Loss rate in 64-byte UDP packet experiment.

Figure 11 plots the speed in forwarding packets
of three typical packet sizes, i.e., 64-byte, 512-byte,
and 1500-byte. For the later two packet sizes, we set
the packet input speed to saturate the 1 Gbps link.
That is, the maximum packet input speed is about
230K pps for 512-byte packets and the about 80K
pps for 1500-byte. As we can see from Figure 11,

the forwarding speed becomes lower for larger pack-
ets and having more FEs still achieves faster for-
warding speed. PdP virtual router with three FEs
can match the speed of kernel mode Click in both
the 512-byte packet experiment and the 1500-byte
packet experiment. Allocating two FE machines
instead of one to the PdP virtual router can dou-
ble its forwarding speed. However, increasing the
number of FEs from two to three does not show pro-
portional forwarding speed enhancement because of
the bandwidth limit of Gbit Ethernet link.

Forwarding with large FIB: When the num-
ber of entries in the FIB is small, the IP address
lookup time is ignorable due to the “warm cache”
effect [26]. To study the forwarding performance of
the PdP virtual router in case of large FIB, we con-
figure a table with more than 170K entries in the
FE guest machines of the virtual router and repeat
the above UDP packet experiments. In the router
machine, all routes have the same nexthop, which
is the destination host. To avoid the warm cache
effect, the source host sends out UDP packets with
randomly selected unicast destination IP addresses.
The forwarding speed experiment results, for three
typical packet sizes, are plotted in Figure 12.
The results in Figure 12 show that the PdP vir-

tual router still performs better than the user mode
Click software router and matches the speed of ker-
nel mode Click. However, the forwarding speed gets
lower when using large FIB, especially for 64-byte
packet experiment. For large packets, the forward-
ing speed does not show much degradation because
the packet input speed is slow (due to the link band-
width limit) and the IP address lookup time is not
the significant part in packet processing.

5.2.2. Out-of-Order Packets and TCP Throughput

The experiments using UDP traffic test only
the raw packet forwarding speed of virtual router
hosted in PdP. Most popular network applica-
tions use TCP protocol and the actual throughput
achieved by TCP depends on more factors such as
packet arriving order, round trip time etc.

Out-of-order packets: Packet out-of-order is a
challenging problem for any parallel processing-
based systems. The following experiment is to
quantify how the parallelization of packet process-
ing in the PdP virtual router affects packet out-of-
order in TCP. We configure the source host to gen-
erate a TCP session using iperf and capture all the
packets at the destination host. Then we use the
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Figure 11: Packet forwarding speed when FIB is small (2 entries).
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Figure 12: Packet forwarding speed when FIB is large (more than 170K entries).

Expert Info tool in wireshark [27] to analyze the out-
of-order packets. The percentages of out-of-order
packets, when the PdP virtual router has one, two,
and three FEs, are shown in Table 1.

1 FE 2 FEs 3 FEs

% of out-of-
0.31% 10.19% 13.02%

order pkts

Table 1: Percentages of out-of-order packets. MD distributes
packets to FE guest machines based on round-robin.

When more than one FE guest machines are used
by the PdP virtual router, about 10% ∼ 13% pack-
ets in the TCP session are out-of-order and there
is no significant difference between the experiments
using two and three FE guest machines. Although
considerable number of packets in the TCP session
are out-of-order packets, as will be shown later, we
still get decent TCP throughput.
Next we evaluate how the strategy of the packet

classifier running in the MD affects the packet out-
or-order. We use two identical FEs in the PdP node
and each FE hosts one guest machine. We tune the
setting of OpenVZ so that one FE guest machines
has 75% of the CPU cycles of an FE and the other

FE guest machines has 50% of the CPU cycles of an
FE. The packet classifiers in MD uses two packet
distributing strategies. One is sending packets in
round-robin manner; the other is sending different
number of packets based the allocated CPU cycles
of the FE guest machines, i.e., for every 5 packets,
sending packets 1, 3, 5 to the FE guest machine
with 75% CPU cycles and sending packets 2, 4 to
the FE guest machine with 50% CPU cycles. Ta-
ble 2 shows the results.

round-robin proportional

% of out-of-
12.27% 10.02%

order pkts

Table 2: Out-of-order packets when MD uses round-robin
scheduling and proportional scheduling.

The results in Table 2 tell us that less out-of-
order packets will occur if the packet classifier in
MD takes into account the packet processing power
of FE guest machines instead of blindly sending
packet to FE guest machines in a round-robin man-
ner.

TCP throughput: We configure an iperf server to
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run in the destination host. An iperf client runs in
the source host and sends TCP traffic to the iperf

server. When multiple FEs are used by the PdP
virtual router, the MD sends packets to them in a
round-robin manner. Both small FIB and large FIB
are tested in our experiments. However, the TCP
throughput in those two cases does not show signif-
icant difference. This is consistent with our UDP
packet forwarding speed experiment results where
large packets are used, because most of the packets
in the TCP sessions are large packets (more than
512 bytes). Figure 13 plots the TCP throughput in
our experiments using small FIB.
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Figure 13: The TCP throughput.

Our experiments show that the PdP virtual
router with one FE guest machine achieves sim-
ilar TCP throughput as user mode Click router.
Although there are a lot of out-of-order packets,
the PdP virtual router with two or three FE guest
machines demonstrates significant improvement in
TCP throughput compared with user mode Click
and PdP virtual router with one FE guest machine.

5.2.3. Packet Traverse Time

As every packet needs to forwarded between mul-
tiple PCs in a PdP virtual router, one can expect
the it takes longer for a packet to traverse a PdP
node. We use the following experiment to evaluate
the extra delay in the packet traverse time. Here
the source host in Figure 8 uses ping to send ICMP
packets to the destination host. We record average
round-trip-time (RTT) reported by ping and show
the results in Table 3.
Table 3 shows us that one PdP node adds about

0.17ms extra delay to the RTT, compared with the
kernel mode Click router. That means a packet
needs about 0.085ms additional time to traverse
a PdP node once. According to the measurement

user
PdP

kernel

Click Click

RTT (ms) 0.208 0.296 0.132

Table 3: Round trip time of traversing a PdP node.

study in [28], most hosts in Internet are about 14
hops away from a university probing site and the
average RTT from those hosts to the probing site is
about 80ms. Therefore, if PdP is widely deployed
in Internet and each PdP node adds 0.17ms addi-
tional RTT delay, the total additional RTT delay
would be about 2.4ms, which is negligible consider-
ing an 80ms average RTT in Internet. As one can
see from Table 3, if comparing PdP with user mode
Click router, the extra delay in packet traverse time
would be even more insignificant.

5.3. Control Plane Overhead and Its Impact to
Data Plane Performance

How fast the control plane of a PdP virtual router
can update its data plane is an important issue we
should consider, because the control plane and data
plane of a virtual router hosted in PdP are located
at different machines. Control plane updating data
plane FIB also introduces certain overhead in the
FE guest machines running the virtual router data
plane. We also evaluate how that affects the packet
forwarding in data plane.

FIB population time: We setup a PdP virtual
router with one FE guest machine, which exclu-
sively uses one FE. That virtual router runs the
XORP BGP routing process as its control plane.
Another machine runs the lbgps tool [29] to inject
routes into the XORP BGP routing process of the
virtual router. We vary the size of the routing ta-
bles injected by lbgps from 10 entries to 200,000
entries. While the control plane XORP is updating
the FIB of the data plane, we monitor the Click
running in the FE guest machine and record when
the first and the last routes are received and in-
stalled in Click. For each table size, we repeat the
experiment for five times. The average time used
by the PdP virtual router control plane to populate
its data plane FIB, as a function of the table size,
is plotted in Figure 14.
From Figure 14 we can see that the FIB popula-

tion time increases linearly as the table size grows.
When the table has 200,000 entries, which is about
half of the prefixes in a full Internet BGP table, it
can take about one and half minutes to populate
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Figure 14: FIB population time.

the data plane FIB of the virtual routers. However,
considering the FIBs are usually incrementally up-
dated, we can expect that usually a PdP virtual
router can update its data plane FIBs quickly. For
example, in our experiments, it takes only 0.4 sec-
onds for the virtual network control plane to pop-
ulate 1,000 routes into its data plane FIB.
In our experiments, we count the number of

routes in the date plane FIB after the control plane
finishes the route updating to check whether all
routes are installed in the data plane FIB. Although
multicast uses UDP, our experiments show that the
virtual router data plane always successfully re-
ceives all the routes sent by its control plane and
installs them in the FIB.

FIB population overhead: In Figure 15, we plot
the CPU usage of the FE guest machine when the
PdP virtual router control plane is populating its
data plane FIB using a table with 200K entries.
Figure 15 shows that populating the data plane FIB
is not very expensive in terms of CPU usage in the
FE guest machine. During the FIB populating pro-
cess, the CPU usage of the FE guest machine never
exceeds 25%. On average, the CPU usage of the
FE guest machine is about 14%.
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Figure 15: FE guest machine CPU usage during populating
200,000 routes into the FIB .

Impact to data plane: To understand the im-
pact of the control plane overhead to the data plane
performance, we repeat the TCP throughput ex-
periment when the virtual router control plane is
updating its data plane FIB with a table that has
200K entries. The experiment results are plot-
ted in Figure 16. Our experiment shows that the
TCP throughput is about 20% slower when the
control plane of the PdP virtual router is updat-
ing its data plane FIB, which is about proportional
to the CPU usage overhead in populating FIB.
The TCP throughput in our experiment ranges in
300M ∼ 320M .
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Figure 16: TCP throughput when populating 200,000 routes
into the FIB.

We should note that populating a large FIB (like
the table used in our experiment with 200K entries)
into the data plane happens only in some special
cases. For example, a multi-homed AS in Internet
loses one of its provider links so half of its routes
will be changed. In most cases, the data plane FIBs
are incrementally updated and only small number
of routes will be changed. As Figure 14 shows, up-
dating 1,000 routes takes about 0.4 seconds. Hence,
we can expect that in most cases the control plane
overhead will not have noticeable to the data plane
performance.

6. Conclusion

In this paper we present PdP, a full pro-
grammable and high speed network virtualization
platform. PdP is built from cost-efficient commod-
ity hardware and open source software. A virtual
network hosted in PdP can have complete control
over its control plane and data plane without inter-
fering other virtual networks. The key ideas behind
PdP are two-fold: running virtual network control
plane and data plane in guest machines for bet-
ter isolation and flexibility; having multiple guest
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machines working in parallel to achieve high speed
packet processing. We have built a prototype of the
PdP node. The performance measurement shows
that for both UDP and TCP traffic, a virtual router
hosted in PdP can closely match the best-known
packet forwarding speed of software routers run-
ning in commodity hardware. Our experiment also
shows that the control plane of a virtual router
hosted in PdP can update its data plane FIB with-
out too much overhead.
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