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ABSTRACT
The fast pace of global urbanization is drastically chang-
ing the population distributions over the world, which leads
to significant changes in geographical population densities.
Such changes in turn alter the underlying geographical power
demand over time, and drive power substations to become
over-supplied (demand ⌧ capacity) or under-supplied (de-
mand ⇡ capacity). In this paper, we make the first attempt
to investigate the problem of power substation-user assign-
ment by analyzing large-scale power grid data. We develop a
Scalable Power User Assignment (SPUA) framework, that
takes large-scale spatial power user/substation distribution

data and temporal user power consumption data as input,
and assigns users to substations, in a manner that minimizes
the maximum substation utilization among all substations.
To evaluate the performance of our SPUA framework, we
conduct evaluations on real power consumption data and
user/substation location data collected from a province in
China for 35 days in 2015. The evaluation results demon-
strate that our SPUA framework can achieve a 20%–65% re-
duction on the maximum substation utilization, and 2 to 3.7
times reduction on total transmission loss over other base-
line methods.
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1. INTRODUCTION
Electricity has become an indispensable necessity in our

daily lives, powering the machines that keep our homes,
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businesses, schools and hospitals safe, comfortable and con-
venient. As the fast development of sensors, monitoring
devices, such as smart meters, a large amount of power
grid data are generated over time, including temporal en-
ergy consumption data, spatial user/substation distribution
data, and so on. All these heterogeneous data sources o↵er
new research and technological opportunities, and enable in-
telligent solutions for various applications in power grids.

A power grid consists of a network of power plants and
power substations that provide electricity power to a wide
range of power users. Each power substation has a certain
power capacity, that limits the total power demand it can
serve. However, the fast pace of global urbanization leads
to significant changes on geographical population densities,
thereby altering the underlying geographical power demand
over time. For example, from large-scale power consump-
tion data from many cities in China, the rapid expansion of
urban population sizes has driven regional power demands
to the capacity limits of the nearby power substations. On
the other hand, as the population density changes over time,
some power substations cover power users that are 300 km
away, leading to high transmission losses. We are thus mo-
tivated to investigate how to reduce substation power uti-
lization, and prevent them from being overloaded or over-
supplied.

In this work, we make the first attempt to investigate the
power user assignment problem in large scale power grid.
The design goal is to have a scalable solution to assign each
power user to one substation, while minimizing the maxi-
mum substation utilization. We develop an Scalable Power
User Assignment (SPUA) framework, which takes the spa-
tial power user/substation distribution, and temporal user
power consumption data as input, and performs optimal
user assignment to substations, that minimizes the maxi-
mum substation utilization among all substations. Our main
contributions are summarized as follows.

• We formulate the power user assignment problem us-
ing integer programming, which is NP-hard. We employ a
2-approximation algorithm to solve the problem via linear
programming (LP) relaxation.

• To evaluate the performance of our SPUA framework,
we conduct evaluations on real power consumption data and
user/substation location data collected from a province in
China for 35 days. The evaluation results demonstrate that
our SPUA framework can achieve a 20%-65% reduction on
the maximum substation utilization, and 2 to 3.7 times re-
duction on total transmission loss. Moreover, we plan to

make the power grid dataset available to facilitate the re-



Figure 1: Long-distance coverage Figure 2: Under- and over-supplied
substations (peak hours)

Figure 3: Under- and over-supplied
substations (valley hours)

search community once the paper gets accepted.
The rest of the paper is organized as follows. Section 2

presents the datasets and motivations. Section 3 presents
the framework and detailed methodology of SPUA. Section 4
presents evaluation results on a real large-scale power con-
sumption dataset. The paper is concluded in Section 5.

2. MOTIVATIONS
In this section, we describe the dataset we use and moti-

vate the power user assignment problem.

2.1 Datasets
The dataset we use for this study includes (1) power user

profiles, (2) power substation profiles, and (3) temporal user
power consumption data. The datasets were collected from
a province in China during March 10th – April 13th in 2015.
Power user locations. The dataset contains in total 6.3
million unique users, with their unique user IDs. Note that
users include 6.16 million residential users and 0.14 million
commercial and industrial users.
Power substation locations and capacities. At the
time of data collection, there were 783 power substations
deployed in the province. Each substation has a substa-

tion ID, address and substation capacity, namely, the max-
imum electrical power it can provide per hour. We parsed
the addresses into locations in latitude and longitude using
BAIDU Geo-Coding APIs, and cross-validated using Google
Geo-Coding APIs. There are about 25% user records with
missing or incomplete addresses, which were therefore elim-
inated from the dataset.
Temporal user power consumption data. This dataset
contains both the user-substation assignment information
and the dynamic power usage for each individual user. Each
user with a user ID uid is uniquely assigned to a substation
sid. Moreover, the dataset contains the power usage for all
users over 35 days. For each user, the dataset records the
total daily power consumption, and the power consumptions
for peak hours (9AM-1PM and 9PM–1AM), plain hours
(1PM–9PM), and valley hours (1AM–9AM), respectively.

2.2 Motivations
A power grid consists of a network of power plants and

power substations. A power plant is an industrial facility
for the generation of electric power, which contains one or
more generators. A power substation as a part of an electri-
cal generation, transmission, and distribution system, trans-

forms voltage from high to low, or the reverse. Moreover, a
power substation could serve a group of power consumers.

By analyzing the datasets, we obtained interesting obser-
vations: Due to the global urbanization and human mobil-
ity, the population size and density change geographically
over time, which drives the needs to upgrade the power grid
network infrastructure for two main reasons, including long
distance user coverage and over- and under-supplied power
substations.
Long distance user coverage. The electrical power trans-
mission incurs certain transmission cost. The longer the user
is from the substation, the more power transmission loss [3].
Studies have shown that the power transmission is propor-
tional to the square of transmission distance. From the real
data, we observe that many users are covered by a long dis-
tance power substation, rather than a nearby one. Figure 1
shows five power substations in the province that cover users
who are 300 km away from the substation or more.
Over- and under-supplied power substations. A power
substation when being designed and deployed has a certain
capacity, namely, a maximum amount of electrical power
can be provided per unit time (e.g., one hour). Over time,
the power demand of some power substations may increase
drastically, and exceed the substation capacity, leading to
under-supplied scenario. On the other hand, the popula-
tion density may decrease in the regions covered by some
power substations, which would lead to over-supplied sce-
nario, where the substation utilization becomes lower. For
example, Figure 2 and 3 show the substations with highest
and lowest power utilization during peak and valley hours,
respectively. For those busy power substations, they are
primarily located in regions with high population densities,
such as downtown of Urumqi City.

Motivated by these observations, we aim to develop a scal-
able power user assignment framework, that assigns each
user to a power substation by analyzing large-scale power
consumption data, which maintaining low substation utiliza-
tions. Next, we define the power user assignment problem 1.

1Besides distribution automation through reassigning the
users to substations, there are alternative methods to tackle
the above two challenges, including upgrading/degrading
the substation capacity or deploying/removing new power
substations. However, those methods are more costly in
terms of redeployment cost [1], and reassignment of users
and substations are still needed after applying these meth-
ods. Thus, in this paper, we focus on the solution based on
reassigning users to substations.



3. FRAMEWORK
Figure 4 presents our scalable power user assignment (SPUA)

framework. It takes three datasets as inputs, including power
user profiles, power substation profiles, and user power con-
sumption. The whole framework consists of two stages (high-
lighted as two dashed boxes): (1) user aggregation, and (2)
user assignment.
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Figure 4: Scalable power user assignment

3.1 User Aggregation
In a real power grid system, due to various system con-

straints it is not possible to assign individual users to just
any substation. For example, users on the same distribution
line or transformer have to be assigned/switched to the same
power substation. To consider such constraints, we aggre-
gate the power users with the same or close locations to an
aggregated super user, and conduct the user assignment for
aggregated users.

We use a granularity of 0.0005 degrees in latitude and
longitude, roughly 50 meters distance, to aggregate users. It
is worth mentioning that we only aggregate residential users
(who tend to have lower amounts of power consumption),
not commercial or industrial users. After the aggregation,
we extracted m = 21, 801 aggregated users from 6.3 million
individual users. For simplicity and conciseness, we will use
power users to refer to aggregated power users throughout
the remainder of this paper.

Given a group of individual users who form an aggregated
user, we sum up all power consumed by individual users to
extract the power consumption for the aggregate user. For
each aggregated user j 2 Ua, we extract the average hourly
power consumption dj 2 Da during peak hours.

3.2 User Assignment

3.2.1 Problem Formulation
Given a set of substations S with capacity C, (aggregated)

users Ua, together with the average user peak hour demand
Da, we are now in a position to formulate the power user
assignment problem, with the goal of minimizing the max-
imum power substation utilization. Given a user j 2 Ua,
the total hourly power consumption for assigning it to sub-
station i 2 S is pij = dj + ↵d2jdistij , which contains dj
the actual average hourly power consumption during the
peak hours and ↵d2jdistij the transmission loss incurred by
transmitting dj amount of power from the substation i to
user j. Note that we use the average hourly user power de-
mand during peak hours Da = [dj ] instead of over all 24
hours, because the highest power utilization of substations
in general occurs during peak hours. The transmission loss
is a product of a system factor ↵, the (Euclidean) distance
distij (in kilometers) between station i and user j, and the

square of user j’s hourly power consumption in peak hours
d2j . Thus, the substation power utilization `i is the ratio
between the total user power demand with the operation
cost by transmission loss pij and the substation capacity ci,
namely, `i =

P
j pijxij/ci. Each dj 2 Da is extracted from

the past power consumption data in the user aggregation
stage. Let ` be the maximum substation power utilization.
We denote a decision variable xij as a binary indicator vari-
able, indicating that a user j 2 Ua is assigned to a station
i 2 S when xij = 1, and xij = 0 otherwise. We aim to find
the optimal assignment of all xij values that leads to the
smallest possible `. This problem is formally formulated as
below.

min: ` (1)

s.t.:
X

j2Ua

pij
ci

xij  `, 8i 2 S, (2)

X

i2S

xij = 1, 8j 2 Ua, (3)

xij = {0, 1}, 0  `  1, 8i 2 S, j 2 Ua. (4)

The objective function eq.(1) is to minimize the maxi-
mum utilization ` for all power substations. The constraint
in eq.(2) indicates the power substation capacity constraint,
namely, for a substation i 2 S, the substation power uti-
lization `i is no more than the maximum power utilization
`. The validity constraint in eq.(3) indicates that any power
user is covered by exactly one power substation.

3.2.2 Optimal Power User Assignment
The above integer linear programming (ILP) problem can

be viewed as a makespan scheduling problem with unrelated

machines or scheduling on unrelated parallel machines. The
problem is NP-hard and has been extensively studied in the
literature, with a variety of approximation algorithms pro-
posed that employ LP-rounding approaches. In this study,
we adopt the approximation solution algorithm proposed
in [2] based on LP-rounding. Other algorithms can be cho-
sen, depending on the specific requirements on the error
bound and complexity.

Lemma 1. Algorithm 1 assigns each power user in Ua to

one substation in S, and the maximum substation utilization

` obtained by such assignment is no more than 2`⇤, where

`⇤ is the optimal objective value to the problem eq.(1)–(4).

Algorithm 1 Approximate Power User Assignment Algo-
rithm
1: Input: Ua, S, Da, ↵, distij ;
2: Output: xij 2 {0, 1}, `;
3: for j 2 Sa do
4: yij = 1, if i = argmini2S{pij/ci}, and 0, otherwise;
5: � = maxi

P
j2Ua

pijyij/ci;
6: Binary search ` in [�/n,�] for smallest ` that LP (`) has

a feasible solution [xij ];
7: Construct bipartite graph H and find perfect matching

M ;
8: Round in X = [xij ] all fractionally set jobs according to

the matching M ;
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4. EVALUATIONS
We evaluate our proposed SPUA using two performance

metrics, including maximum substation utilization (max.
utilization) and total transmission loss (in kWh). We pri-
marily compare our SPUA method with three baseline algo-
rithms, including the current user assignment (CUA), Distance-
based user assignment (DBUA), and greedy method (Greedy).
(1) Current user assignment (CUA). This baseline algorithm
employs the substation-user assignments observed from the
real dataset.
(2) Distance-based user assignment (DBUA). This baseline
algorithm simply assigns each user to its closest substation.
(3) Greedy method (Greedy). The idea behind this baseline
algorithm is that we want to incrementally assign users to
substations, so as to keep each substation with the relatively
same utilization.

To evaluate the salability of the proposed framework, we
change the problem scale by choosing sub-regions with vary-
ing sizes, i.e., from 10% to 90% size of the entire dataset. For
each size, e.g., 10%, we randomly generate 100 sub-regions,
and take the average of the result from each region, to reduce
the e↵ect of randomness.

As shown in Figures 5, we observe that our SPUA method
has the lowest maximum substation utilization comparing
all baseline methods, with a significant improvement rang-
ing from 20% (over Greedy) to 65% (over DBUA at the scale
of 90% original region size). As the size of the sub-region
increases from 10% to 90%, the maximum substation utiliza-
tion decreases with our SPUA method and Greedy method.
The reason is that a larger underlying sub-region generally
contains a larger number of users and substations, thus al-
lows larger flexibility for SPUA and Greedy to assign and
shift users across substations, leading to lower maximum
substation utilization. Since the user assignment with CUA
does not change with the sub-region scale, the maximum
substation utilization stays the same over sub-region sizes.

Similarly, when looking at the total transmission loss (in
kWh), our SPUA always achieves lower total transmission
loss over CUA and Greedy methods (as shown in Figure 6),
with 2 to 3.7 times reduction. Notice that DBUA method
has a slightly lower (about 30–190kWh) total transmission
loss (per hour) than SPUA method, which is because DBUA
is designed by nature to assign the nearest substations to
users, thus leading to the lowest total transmission loss.
However, comparing to the significant improvement (up to
65% reduction) of maximum substation utilization over DBUA
method (from Figure 5), such a small increase on transmis-
sion loss is completely reasonable.

To demonstrate the practicability of the proposed frame-

work, we look into the user assignment results obtained
by SPUA vs the current assignment from the data. Fig-
ure 7 visualizes three substations with particularly long dis-
tance coverage in the existing user assignment. The black
dots are the substations, and the orange circles are the cur-
rent covering regions. Due to the high transmission loss,
SPUA method re-assigns users from orange to blue circles,
which are nearer in proximity. Comparing to Figure 2, Fig-
ure 8 illustrates that SPUA balances the substation utiliza-
tion across substations to circumvent the over- and under-
supplied problems. For over-supplied substations, SPUA
either merges some of them, or expands their coverage to
achieve higher utilization. For under-supplied substations,
SPUA reduces the covering range to decrease the substation
utilization.

5. CONCLUSION
In this paper, we study the problem of how to judiciously

assign each power user to a substation, such that the max-
imum substation utilization is minimized. We develop a
data-driven scalable power user assignment (SPUA) frame-
work that takes heterogeneous power grid data as inputs, in-
cluding temporal power consumption data and spatial power
user/substation distribution data, and performs optimal user
assignment. The observation from evaluations motivates us
to further investigate various power grid planning problems,
including the power plant and substation deployment, as
well as roll-out strategies of substation-user assignment.
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