
Computer Networks 56 (2012) 2132–2147
Contents lists available at SciVerse ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet
DPillar: Dual-port server interconnection network for large scale
data centers q

Yong Liao a, Jiangtao Yin a, Dong Yin b, Lixin Gao a,⇑
a Department of Electrical and Computer Engineering, University of Massachusetts at Amherst, Amherst, MA 01003, United States
b Automation Department, Northwestern Polytechnical University, Xi’an, ShanXi 710072, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 2 May 2011
Received in revised form 5 February 2012
Accepted 24 February 2012
Available online 6 March 2012

Keywords:
Data center network
Multi-path routing
Network topology
1389-1286/$ - see front matter � 2012 Elsevier B.V
doi:10.1016/j.comnet.2012.02.016

q Part of this work has been published in Proceed
the 19th International Conference on Computer C
Networks [21].
⇑ Corresponding author. Tel.: +1 413 545 4548; fa

E-mail addresses: yliao@ecs.umass.edu (Y. Liao)
(J. Yin), yindong@mail.nwpu.edu.cn (D. Yin), lgao@ec
To meet the huge demands of computation power and storage space, a future data center
may have to include up to millions of servers. The conventional hierarchical tree-based
data center network architecture faces several challenges in scaling a data center to that
size. Previous research effort has shown that a server-centric architecture, where servers
are not only computation and storage workstations but also intermediate nodes relaying
traffic for other servers, performs well in scaling a data center to a huge number of servers.
This paper presents a server-centric data center network called DPillar, whose topology is
inspired by the classic butterfly network. DPillar provides several nice properties and
achieves the balance between topological scalability, network performance, and cost effi-
ciency, which make it suitable for building large scale future data centers. Using only com-
modity hardware, a DPillar network can easily accommodate millions of servers. The
structure of a DPillar network is symmetric so that any network bottleneck is eliminated
at the architectural level. With each server having only two ports, DPillar is able to provide
the bandwidth to support communication intensive distributed applications. This paper
studies the interconnection features of DPillar, how to compute routes in DPillar, and
how to forward packets in DPillar. Extensive simulation experiments have been performed
to evaluate the performance of DPillar. The results show that DPillar performs well even in
the presence of a large number of server and switch failures.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction has thousands of servers; a data center in the future can
The prevalence of cloud computing is driving the
deployment of data centers to host various network appli-
cations and services [1,23,3]. In order to better support
computation and storage demanding large scale distrib-
uted applications, as well as provide the multi-tenancy
ability for efficient resource utilization and elastic resource
allocation, data centers have to accommodate a large num-
ber of interconnected servers. A typical data center today
. All rights reserved.

ings of ICCCN 2010:
ommunications and

x: +1 413 545 1993.
, jyin@ecs.umass.edu
s.umass.edu (L. Gao).
have hundreds of thousands or even millions of servers
[17,15]. Although the availability of inexpensive commod-
ity PCs has made it possible to expand a data center to a
huge number of servers, efficiently interconnecting the
servers is still a challenging task. The interconnection net-
work has to provide high bandwidth to facilitate distrib-
uted applications requiring frequent data accessing and
shuffling [11,9,13]. It is also often desired to use cost effi-
cient commodity hardware in order to meet the budget
constraints. The interconnection network should provide
high availability as well because more and more enter-
prise-class mission critical applications are migrating into
data centers. The conventional way of connecting multiple
levels of switches into a tree and attaching servers as
leaves of the tree [4] faces difficulties in scaling a data cen-
ter to more than a few thousands servers [5]. The high

http://dx.doi.org/10.1016/j.comnet.2012.02.016
mailto:yliao@ecs.umass.edu
mailto:jyin@ecs.umass.edu
mailto:yindong@mail.nwpu.edu.cn
mailto:lgao@ecs.umass.edu
http://dx.doi.org/10.1016/j.comnet.2012.02.016
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

Y. Liao et al. / Computer Networks 56 (2012) 2132–2147 2133
speed core switches close to the tree’s root will soon be-
come the cost and performance bottleneck as the number
of servers grows.

Researchers are actively searching for new network
architectures to build cost efficient and high performance
data centers. The VL2 network [15] uses a tree-based
switch fabric to connect servers and provides a design with
better agility property than conventional data center net-
works. The fat-tree network [5,22] is also a tree structure
network. Instead of having expensive high-end switches
at the tree’s root, fat-tree uses identical switches at all lev-
els of the tree. The number of servers connected by a fat-
tree is determined by the number of ports on each switch.

To scale a data center without relying on switches with
more ports, a second thread of research work proposes
moving the networking intelligence from switches to serv-
ers, i.e., each server can forward traffic for other servers.
Such a data center network is often referred to as a ser-
ver-centric network. Besides the ability to easily scale the
network size, a server-centric network offers other advan-
tages in building large scale data centers. As the network-
ing intelligence is moved to servers, switches can be simple
layer-2 plug-and-play devices. Using dummy low-end
switches can greatly reduce the cost of building a data cen-
ter. Secondly, as servers are easier to program than
switches, it is more convenient to develop and deploy rout-
ing and management mechanisms in server-centric data
center networks. The DCell network [17] uses small
switches to connect multi-port servers into ‘‘cells’’ and
scales the network by recursively connecting smaller cells
into larger cells. The network topology of DCell is not sym-
metric. Some links are more likely to be saturated and fail-
ures of those links are of greater impact to the network
performance. The FiConn network [20] adopts similar idea
as DCell to recursively expand the network size. Each ser-
ver in FiConn needs to have only two ports. Because most
off-the-shelf servers already integrate two ports, one pri-
mary and one backup, FiConn can use commodity servers
in an as-is manner. FiConn is not a symmetric structure
either and it has similar issues as DCell, e.g., some links will
be more loaded than others. The BCube network [16] has
symmetric network topology and it performs very well in
terms of network bandwidth. In order to scale the network
size, each server in BCube needs to have more ports.

In this paper, we propose a new server-centric data cen-
ter network architecture called DPillar. DPillar uses only
commodity hardware and can easily scale to a huge number
of servers. No matter how many servers exist in a DPillar
network, the number of ports in each server is always fixed.
More specifically, with each server having only two ports,
we can build a DPillar network to accommodate any num-
ber of servers. In contrast, both DCell and BCube require
additional ports from servers in order to connect more serv-
ers into the networks, which could be a practical issue be-
cause off-the-shelf commodity servers always have a
fixed number of ports. DPillar has a symmetric structure
and therefore it eliminates any network bottleneck at the
architectural level. The symmetric structure of DPillar facil-
itates the development of high performance routing mech-
anisms. In DPillar, servers forwarding traffic does not incur
much overhead to them because there is no routing table
lookup in packet forwarding. Instead, a server computes
the next hop in O(1) time based on its own address and des-
tination address of the packet being forwarded. Even
though each server has only two ports, a DPillar network
offers rich connections between servers, which we have
leveraged in designing an efficient multi-path routing
scheme. This scheme produces multiple paths between a
source–destination pair in a DPillar network. The disjoint-
ness of the yielded paths is formally proved in this paper.
We also provide a design to utilize the disjoint paths to tol-
erate failures and balance load in a DPillar network.

DPillar is closely related to the classic wrapped butterfly
network [19]. The design of our routing schemes is in-
spired by previous work on thewrapped butterfly network
as well. It is worthy to highlight here a few essential differ-
ences between DPillar and thewrapped butterfly network.
DPillar requires only two ports for each server but a node
in a wrapped butterfly network needs to have four ports.
More importantly, because of using switches instead of di-
rect server-to-server links, a DPillar network has much
smaller network diameter than a wrapped butterfly net-
work of the same size. A DPillar network also provides
much better bandwidth than a wrapped butterfly network
of the same size. More details on comparing DPillar to a
wrapped butterfly network will be presented in Section
2.6.

In summary, in this paper we make the following tech-
nical contributions in data center network design: (1) We
propose a new server-centric data center network archi-
tecture with symmetric topological structure. A DPillar
network can scale to a huge number of servers with each
server having a fix number of ports. (2) We provide a com-
prehensive study of DPillar’s interconnection properties.
(3) We design a simple yet high performance multi-path
routing scheme, and have provable path disjointness result
applicable to a large set of related network topologies.

The rest of this paper is organized as follows. Section 2
presents the network structure of DPillar in detail and
studies its topological properties. Sections 3 and 4 are de-
voted to the discussion of routing and packet forwarding in
DPillar networks. Section 5 presents performance evalua-
tion results. The background of interconnection networks
and a discussion of related work on data center networks
are presented in Section 6. Section 7 concludes this paper.
2. DPillar interconnection

This section presents the interconnection of DPillar. We
first present how servers in DPillar are addressed and con-
nected. Then we study the mathematical principles behind
DPillar’s structure and its topological properties, which
serve as the foundation of designing packet routing and
forwarding mechanisms for DPillar. A comparison between
DPillar and the closed related wrapped butterfly network
[19] is also presented in this section.
2.1. Logical representation of DPillar network

A DPillar network is built from two kinds of devices,
dual-port servers and n-port switches. The servers and

2134 Y. Liao et al. / Computer Networks 56 (2012) 2132–2147
switches are logically arranged into k equal-size server col-
umns and k equal-size switch columns. Each server column
has n

2

� �k servers and each switch column has n
2

� �k�1
Fig. 1. A vertical view of the pillar. The blocks represent switch columns
and the circles represent server columns. The server columns and switch
columns are alternately placed into a large circle. It looks like they are
attached to the cylindrical surface of a pillar.

Fig. 2. Two-dimensional view of an (8,2) DPillar network. The number in each c
this figure to better show the connection between server column H0 and switch
switches. The server columns and switch columns are
numbered as H0 � Hk�1 and S0 � Sk�1, respectively. The ser-
ver columns and switch columns are alternately placed
into a logical circle, as shown in Fig. 1. Visually, the 2k col-
umns of servers and switches are attached to the cylindri-
cal surface of a pillar. For ease of exposition, in the rest of
this paper we call server column H(i+1)%k a clockwise neigh-
boring column of Hi and H(i+k�1)%k a counter-clockwise neigh-
boring column of Hi. As we can see, a DPillar network is
uniquely defined by two parameters, n, the number of
ports in each switch, and k, the number of server columns.
We call such a DPillar network an (n,k) DPillar network.

2.2. Addressing servers in DPillar

For the n
2

� �k servers in any server column Hi in an (n,k)
DPillar network, each of them is assigned with a k-symbol
label (mk�1 . . . m0), where each symbol mi is an integer num-
ber between 0 and n

2� 1
� �

. Under this labeling scheme, one
server in DPillar can be uniquely identified as (C,mk�1 . . .

m0), meaning a server with label (mk�1 . . . m0) at server col-
umn HC. We call (C,mk�1 . . . m0) the address of the server.

Fig. 2 shows an (8,2) DPillar network in a two-dimen-
sional view. There are two server columns (H0 and H1)
and two switch columns (S0 and S1). The label of a server
has two digits, and each digit can be of value [0,3]. For
ircle is the label of that server. Note that server column H0 is duplicated in
column S1.

Y. Liao et al. / Computer Networks 56 (2012) 2132–2147 2135
instance, the top left circle is a server at column H0 and its
label is (00), therefore its address is (0,00); the bottom left
circle is a server of address (0,33).

2.3. Connecting servers via switches

Let us consider server columns Hi and H(i+1)%k. There are
totally 2 n

2

� �k servers in those two columns. Under the
addressing scheme described in Section 2.2, those 2 n

2

� �k

servers can be divided into n
2

� �k�1 equal-size groups so that
for those n servers in the same group, their labels are the
same except the ith symbol (i.e., symbol mi). The n servers
in the same group are connected to the same switch in
switch column Si. It is easy to see that among the n servers
in a group, half of them are in server column Hi and the
other half are in H(i+1)%k.

For example, Fig. 2 shows the connection of servers and
switches in an (8,2) DPillar network. For ease of illustra-
tion, we duplicate server column H0 and plot the cylindri-
cal surface of the logical pillar as a two-dimensional view.
In this example, each server column has 8

2

� �2 ¼ 16 servers
and the label of each server has two symbols. The address
of each server can be represented as (C,m1m0). The first
switch in S1 is connected with eight servers, including four
servers in H1 and four servers in H0. The labels of those
servers are (00), (10), (20), and (30), respectively. That is,
their labels are of form (m10), with 0 6 m1

6 3. Note that
those labels are the same if m1 is removed. Similarly, the la-
bels of those eight servers connected to the first switch at
S0 are (00), (01), (02), and (03). They are of form (0m0)
0 6 m0

6 3, and they are the same if m0 is removed.
The rule of connecting servers via switches can be sum-

marized as following. For any label (mk�1 . . . mi . . . m0), there
are n

2 servers in Hi whose labels are ðmk�1 . . . mi
� . . . m0Þ, where

0 6 mi
� 6

n
2� 1; there are n

2 such servers in H(i+1)%k too. Those
n servers are connected to the same n-port switch in switch
column Si. Given the way of how servers and switches are
connected, the following Proposition 2.1 is obvious.

Proposition 2.1. For two servers in any server column Hi,
they are connected to the same switch if their labels differ at
the ith symbol only (i.e., symbol mi) or differ at the ((i �
1)%k)th symbol only (i.e., symbol m(i�1)%k).
2.4. Topological properties

For building large scale data centers, the interconnection
network must accommodate a huge number of servers. The
network should also provide sufficient bandwidth to sup-
port traffic intensive applications running in a data center.
DPillar’s topological structure does not impose any limit on
the number of servers connected into the network. Hence, it
is possible to scale a DPillar network into a huge number of
servers. DPillar’s topological structure also has good bisec-
tion width because there are rich connections among
servers.

2.4.1. Number of servers
For an (n,k) DPillar network, since each server column

has n
2

� �k servers, there are k n
2

� �k servers in total. In the rest
of this paper, we use N to represent the total number of
servers in an (n,k) DPillar network and we have Proposi-
tion 2.2.

Proposition 2.2. An (n,k) DPillar network has N ¼ k n
2

� �k

servers.
Because the total number of servers, N, grows exponen-

tially as the number of server columns, k, grows, DPillar
structure scales well in terms of accommodating a large
number of servers. Here we provide some examples on
how many servers an (n,k) DPillar network can support.
Considering that 48-port Gbit Ethernet switches are widely
available now and relatively inexpensive, we assume 48-
port switches are used in building DPillar networks. A
(48,3) DPillar network has 41,472 servers. The number of
servers can be about 1.3 million in a (48,4) DPillar net-
work. If we build a (48,5) DPillar network, it has around
40 million servers.

2.4.2. Bisection width
Bisection width is an important factor to quantify an

interconnection network’s bandwidth. It is defined as the
smallest number of edges removal of which divides the
nodes in the network into two parts of equal size. Larger
bisection width means that the network can sustain more
communications between nodes in the network. Because
servers in a data center usually have lots of interactions
among them when running distributed applications, it is
desirable for a data center network to have large bisection
width.

We use the example shown in Fig. 2 to study how to cut
a DPillar network into two halves. In Fig. 2, the servers in
this (8,2) DPillar network can be divided into a top half
and a bottom half so that for all servers in the top half,
the m1 symbol in their labels satisfies 0 6 m1

6 1; for servers
in the bottom half, the m1 symbol in their labels satisfies
2 6 m1

6 3. This scheme cuts four links for each switch in
S1 and the size of the cut is 16. In general, we can cut an
(n,k) DPillar network into a top half and a bottom half so
that for all servers in the top half, the mk�1 symbol in their
labels satisfies 0 6 mk�1

6
n
4� 1; for servers in the bottom

half, the mk�1 symbol in their labels satisfies n
4 6 mk�1

6

n
2� 1. This scheme cuts n

2 links for each n-port switch in

switch column Sk�1. As there are n
2

� �k�1 switches in Sk�1,

the size of the cut is n
2

� �k. Therefore, the upper bound of
the bisection bandwidth of an (n,k) DPillar network is

n
2

� �k. We can prove that n
2

� �k is also the lower bound. This
is stated as Proposition 2.3. The proof of Proposition 2.3
is presented in Appendix A.

Proposition 2.3. The bisection width of an (n,k) DPillar
network is n

2

� �k.
2.5. Cost efficiency

DPillar network is cost-efficient as it uses commodity
hardware. Here we provide some budget examples of
building DPillar networks. We ignore the cost of servers
and focus on the networking devices, including switches

Table 1
Example budget for networking cost when building a DPillar network with
four columns of servers.

Switch type 8-Port 16-Port 24-Port 48-Port

Switch unit price ($) 50 150 180 600
Number of servers 1024 16,384 82,944 1,327,104
Total networking

cost ($)
14,848 339,968 1,410,048 35,831,808

Per server cost ($) 14.5 20.8 17 27

2136 Y. Liao et al. / Computer Networks 56 (2012) 2132–2147
and Ethernet cables. As most off-the-shelf servers already
integrate dual-port network interfaces, there is no need
to invest on network interfaces for servers.

An (n,k) DPillar network has k switch columns and each

one includes n
2

� �k�1 n-port switches. The total number of

switches is k n
2

� �k�1. There are k n
2

� �k servers and each one
has two ports, so the total number of cables used in an

(n,k) DPillar network is 2k n
2

� �k. Let Us be the unit price of
an n-port switch and Uc be the unit price of an Ethernet
cable, the total networking cost of an (n,k) DPillar network

is Us � k n
2

� �k�1 þ Uc � 2k n
2

� �k
� �

. The average cost of con-

necting one server in a DPillar network is 2(Us/n + Uc).1

The unit prices we get from an online retailing store are
$150 for a 16-port Gbit Ethernet switch and $1 for an
Ethernet cable. We expect the wholesale price of the
switches and cables would be even lower. To build a
(16,4) DPillar network, the cost of all switches is
$307,200. The cost of cables is $32,768, as we need two
cables for each server. The total cost of networking devices
is about 0.34 million USD. On average it costs about $20 to
connect one server. Table 1 shows the total cost and the
per server cost of building DPillar networks with four
columns of servers, when different types of switches are
used.
2.6. Contrasting DPillar with wrapped butterfly network

DPillar is closely related to the wrapped butterfly net-
work [19], which is one of the multi-stage interconnection
networks studied before. The ‘‘column’’ in DPillar is equiv-
alent to the ‘‘stage’’ in the wrapped butterfly network.
DPillar can be viewed as an extension of the wrapped but-
terfly network, but DPillar has a set of unique properties
which make it more suitable in building large scale data
centers. Here we highlight the important differences be-
tween DPillar and the wrapped butterfly network.
2.6.1. Number of ports in servers
In order to connect servers via a wrapped butterfly net-

work, the servers must have four ports. Because most com-
modity servers and servers in existing data centers
integrate only two ports, we have to physically upgrade
1 If we ignore the cost of the cables, the average cost of connecting a
server in a DPillar network is two times the per-port cost of the switches
used in this DPillar network.
the servers if using a wrapped butterfly network to inter-
connect them. Although the cost of additional network
interfaces is not an issue, installing those interfaces in a
large number of servers can be quite time and manpower
consuming. By connecting the servers via switches, DPillar
can use off-the-shelf and existing dual-port servers to
build a scalable data center network.

2.6.2. Network diameter
A wrapped butterfly network with k0 column can

accommodate N0 ¼ k0 � 2k0 servers, while the number is
N ¼ k� n

2

� �k for an (n,k) DPillar network. Assuming N0 = N,
i.e., connecting the same amount of servers in a wrapped
butterfly network and a DPillar network, we have

k0

k
�

log n
2

� �
logð2Þ ¼ log2ðnÞ � 1:

We will show later in Section 3 that the diameter of
DPillar (the max path length between two servers in DPil-
lar) is a linear function of k, the number of server columns
in the network. The linear relationship between k0 and the
network diameter also holds for a wrapped butterfly
network. Therefore, to interconnect the same amount of
servers, the diameter of wrapped butterfly is about
(log2(n) � 1) times the diameter of DPillar. We see that be-
cause of using switches, a DPillar network can have much
more servers in one server column than the wrapped but-
terfly network. Hence, DPillar network scales the number
of servers with much less server columns than the
wrapped butterfly network does and results in much
shorter paths when forwarding traffic between servers in
the network.

2.6.3. Network bisection width
Using switches to connect servers also yields larger

bisection width in DPillar, as compared to wrapped butter-
fly. The bisection width of an (n,k) DPillar network is equal
to the number of servers in each server column. A wrapped
butterfly network also has this property [19]. Each server
column has 2k0 servers in a wrapped butterfly; while each
server column has n

2

� �k servers in DPillar. If connecting
the same amount of servers in a wrapped butterfly net-
work and a DPillar network, i.e., N0 = N, we have

ðn2 Þ
k

2k0
¼ k0

k
� log2ðnÞ � 1:

In other words, DPillar’s bisection width is about
(log2(n) � 1) times the bisection width of a wrapped but-
terfly. For example, if using 48-port switches, a DPillar net-
work’s bisection width is about 4.5 times the bisection
width of a wrapped butterfly network accommodating
the same amount of servers.

3. Single-path routing

By considering the network structure and addressing
the nodes in an intelligent way, one can design efficient
routing in a network with symmetric structure. We will
show in this section that routing and packet forwarding
in DPillar can be quite straightforward because of the

Y. Liao et al. / Computer Networks 56 (2012) 2132–2147 2137
way of interconnecting servers. A server can determine the
nexthop by simply replacing some bits in its address with
the corresponding bits in the destination address of the
packet being forwarded. Therefore, servers can avoid
expensive table lookup operations when forwarding pack-
ets. The routing scheme described in this section computes
a unique path from a source server to a destination server
in DPillar. This single-path scheme serves as the basis for
our DPillar multi-path routing scheme presented later in
Section 4.
3.1. Two-phase packet forwarding

As discussed in Section 2.3, each switch in an (n,k) DPil-
lar directly connects n servers in its two neighboring server
columns, and the labels of those n servers are the same if
one of the n

2 symbols is removed. This property ensures that
a server u in DPillar can always directly reach another ser-
ver v in its neighboring server column, where the label of v
has n

2� 1 symbols in common with u’s label and the other
symbols of v can be of any value in 0; n

2� 1
� �

. Assuming u is
at server column Hi, u can forward a packet to server v at
H(i+1)%k, where the ith symbol of server v’s label and the
destination server’s label are the same. Similarly, v can for-
ward the packet to another server w at H(i+2)%k, where the
(i + 1)%kth symbol of w is the same as that of the destina-
tion server’s label. By keeping doing this, the packet can be
forwarded to a server whose label is the same as the desti-
nation’s label within n

2 hops. Note that in two neighboring
columns, servers of the same label are also directly con-
nected by switches, the packet can be sent to its destina-
tion by always forwarding to a nexthop server with the
same label and whose column is closer to the destination
server’s column.

Based on the rationale described above, packet forward-
ing in DPillar can be divided into two phases. In the first
phase, the packet is forwarded from the source server to
an intermediate server whose label is the same as the des-
tination server’s label. In the second phase, the packet is
forwarded from that intermediate server to the destina-
tion. In the following, we consider a scenario where a
source server s sends a packet to a destination server d.
The addresses of those two servers are (Cs, Ls) and (Cd,
Ld), where Ls and Ld are the k-symbol labels of server s
and d, respectively. Let the labels of those two servers be
Ls ¼ mk�1

s . . . m0
s

� �
, Ld ¼ mk�1

d . . . m0
d

� �
, and Ls – Ld.

(1) Phase one – helix phase: From server s, which is in col-
umn HCs , the packet is sent to a server s1 in column HðCsþ1Þ%k.
The label of s1 is the same as the label of s except the Csth
symbol in s1’s label can be any number from 0 to n

2� 1
� �

.
If server s1 sends the packet to server s2 in column
HðCsþ2Þ%k, s2’s label is the same as s1’s except for that the
((Cs + 1)%k)th symbol of s2’s label, which can be any number
from 0 to n

2� 1
� �

. We see that when a packet is forwarded
for one hop, we can ‘‘change’’ one symbol in the label of
the server which receives that packet. When a packet is al-
ways forwarded from one server column to its clockwise
neighboring server column within k hops, the packet can
reach a server with any given label. For example, in an
(n,k) DPillar network, the trace of a packet forwarded from
(0, 0 . . . 0) to (k � 1, 1 . . . 1) can be (0, 0 . . . 0) ? (1, 0
. . . 1) ? (2, 0 . . . 11) ? (k � 1, 1 . . . 1). As this path resem-
bles a helix among the cylindrical surface of the virtual
pillar, we call the first phase of the packet forwarding pro-
cess the helix phase.

Note that in the helix phase, we can always send the
packet to either a server in the clockwise neighboring col-
umn or a server in the counter-clockwise neighboring col-
umn. However, the direction of forwarding a packet should
not be changed back and forth in order to avoid loops.
Hence, one field in the packet header is used to record
the forwarding direction, and the source server decides
the forwarding direction as clockwise or counter-
clockwise.

(2) Phase two – ring phase: After the packet is forwarded
to an intermediate server d� whose label is the same as the
label of destination server d, one can forward the packet to
d by always sending it to the server in the clockwise neigh-
boring column whose label is Ld too, or sending along the
counter-clockwise direction. We choose the same direction
as the helix phase in our forwarding process. We see that in
this phase of packet forwarding, the packet forwarding
path is like a segment in a ring among the cylindrical sur-
face of the virtual pillar. We call the second phase the ring
phase.

Algorithm 1. DPillarSP((Cc,Lc), (Cd,Ld), D)
The pseudo-code of this single-path routing algorithm,
denoted as DPillarSP, is shown in Algorithm 1. This algo-
rithm takes the address of the current server (Cc,Lc), the
destination server’s address (Cd,Ld), and the forwarding
direction D as input parameters. D = 1 means the direction
is clockwise; D = �1 indicates the counter-clockwise direc-
tion. The output is the address of the nexthop server (CP,LP).
DPillarSP is loop free, and there is no need to maintain any
routing table in the servers. Each server can determine the
nexthop of a packet in constant time, independent of how
many servers there are in a DPillar network. In the rest of
this paper, we call a path generated by DPillarSP the
DPillarSP path.

3.2. Length of the path computed by DPillarSP

A path derived from DPillarSP is obviously not the
shortest one. However, DPillarSP always yields paths with

Fig. 3. In a (n,k) DPillar network, by pairing n
2 clockwise neighboring

servers of the source s and the n
2 counter-clockwise neighboring servers of

the destination d, we can yield n
2 disjoint paths between s and d.

2138 Y. Liao et al. / Computer Networks 56 (2012) 2132–2147
bounded length. We consider the worst case scenario
where the labels of two servers have no common symbols,
in which case a packet needs to be forwarded k times in or-
der to reach a server d� whose label is the same as server
d’s label. After that, from server d�, the packet still needs
to be forwarded (k � 1) hops in order to reach server d in
the worst case. Therefore, the length of the longest path
computed by DPillarSP in an (n,k) DPillar network is
(2k � 1).

Proposition 3.1. Using DPillarSP, any two servers in an (n,k)
DPillar network can reach each other in at most 2k � 1 hops.
4. Multi-path routing

The migration of mission critical applications into data
centers imposes stricter requirements to a data center net-
work in terms of reliability, robustness, and performance.
Multi-path routing has been shown to be an efficient
mechanism to tolerate failures and balance traffic load in
a network [18,12,6]. The rich connections inside a DPillar
network and the flexibility of DPillar’s server-centric archi-
tecture facilitate the design of efficient multi-path routing
scheme. This section presents DPillarMP, a multi-path rout-
ing scheme for DPillar. In an (n,k) DPillar network, DPill-
arMP computes n

2 disjoint paths between a pair of
source–destination servers. We will formally prove the
correctness of our mechanism in computing disjoint paths,
and provide a design to utilize the disjoint paths in by-
passing failures and balancing traffic load in a DPillar
network.

4.1. The basic idea

In DPillar, we define two paths from a source server s to
a destination server d to be node-disjoint if they do not have
any common servers or switches except the switch con-
nected to s and the switch connected to d. As already
shown in Section 3, a source server s can always send pack-
ets to a server at its clockwise neighboring column. In an
(n,k) DPillar network, because server s has n

2 directly con-
nected servers (via the same switch) at its clockwise neigh-
boring column, s has n

2 possible next hops to forward
packets. For the destination server d, there always exists
some server at d’s counter-clockwise neighboring column
forwarding the packets to d, and d directly connects to n

2
servers at its counter clockwise neighboring column as
well. We show an example in Fig. 3. The source s has n

2 next
hops to forward the packet; similarly, there are n

2 ‘‘previous
hops’’ which can deliver the packets to destination d.

Let s0i be the n
2 next hops of source s where 0 6 i 6 n

2� 1,
and d0j, 0 6 j 6 n

2� 1 be the n
2 previous hops of destination d.

If there is an algorithm to yield n
2 pairs of s0i; d

0
j

� �
, where

0 6 i; j 6 n
2� 1 so that the paths between any two pairs

do not have common intermediate servers or switches,
we can have n

2 disjoint paths between source s and destina-
tion d. Next we study the property of disjoint paths in
DPillar, and then present how to pair s0i and d0j to construct
the node-disjoint paths.
4.2. Disjoint paths in DPillar

We use an example in Fig. 4 to demonstrate the dis-
jointness of two paths. Here the source server is (0,00),
and the destination server is (0,33), denoted as s and d in
Fig. 4. We need to pick two next hop servers (denoted by
x1 and x2) for source s and two previous hop servers (de-
noted by y1 and y2) for destination d so that the path be-
tween x1 and y1 does not share common intermediate
nodes with the path between x2 and y2. In this example,
we select server (1,00) and (1,01) as the two next hops
of source s; and select (1,13) and (1,23) as the two previ-
ous hops of destination d. The DPillarSP path from x1 to
y1 is (1,00) ? (0,10) ? (1,13); the DPillarSP path from x2

to y2 is (1,01) ? (0,21) ? (1,23). One can see that these
two paths do not have any common intermediate servers.
Let us have a closer look at the addresses of x1, x2, y1, and
y2. Because x1 and x2 have different symbol m0, their next
hops according to Algorithm 1 should not be the same
since the m0 symbols of those two servers’ labels are differ-
ent. In general, the addresses of x1, x2, y1, and y2 should be
chosen in a way that when the paths are computed by
Algorithm 1 and two intermediate servers are at the same
column, their labels are different.

Based on the intuition described above, we have identi-
fied a sufficient condition for two DPillarSP paths between
two next hops of the source and two previous hops of the
destination to be disjoint. Without loss of generality we
consider a scenario where source server s is at column Hs

and destination server is at column Hd. Let x1 and x2 be
two clockwise neighboring servers of s at column Hs+1; y1

and y2 be two counter-clockwise neighboring servers of d
at column Hd�1 (the modulo operations are omitted here
for simplicity of expression). Since x1 and x2 are connected
to the same switch at switch column Ss, their labels are the
same except for the sth symbol. Their addresses can be rep-

resented as sþ 1; mk�1
x . . . ms

x1
. . . m0

x

� �
, and sþ 1; mk�1

x . . .
�

ms
x2

. . . m0
x Þ, respectively, where ms

x1
– ms

x2
. Similarly, y1 and

y2 are connected to the same switch at switch column
Sd�1, so their labels are the same except for the (d � 1)th
symbol. We use ðd� 1; mk�1

y . . . md�1
d1

. . . m0
dÞ and ðd� 1;

mk�1
y . . . md�1

d2
. . . m0

dÞ to represent their addresses, where

md�1
d1

– md�1
d2

. The following Corollary 4.1 describes a suffi-
cient condition for the DPillarSP paths between those
two pairs of servers to share no common servers or

Fig. 4. Two paths with no common servers or switches in an (8,2) DPillar network.

Y. Liao et al. / Computer Networks 56 (2012) 2132–2147 2139
switches, assuming that the DPillarSP paths follow the
clockwise direction.

Corollary 4.1. Let P1 be the DPillarSP path from server

sþ 1; mk�1
x . . . ms

x1
. . . md�1

x . . . m0
x

� �
to server d� 1; mk�1

y . . .
�

ms
y . . . md�1

y1
. . . m0

y

�
; and P2 be the DPillarSP path from server

sþ 1; mk�1
x . . . ms

x2
. . . md�1

x . . . m0
x

� �
to server d� 1; mk�1

y . . .
�

ms
y . . . md�1

y2
. . . m0

y

�
. P1 and P2 do not share any common servers

or switches, if ms
x1

– ms
y or md�1

x – md�1
y2

, and ms
x2

– ms
y or md�1

x –

md�1
y1

.

Proof. For each path, we divide it into two segments, Segh

and Segr. Segh includes the nodes (servers and switches) on
the path from column Hs+1 to column Hs, and Segr includes
remaining nodes on the path (from column Hs+1 to column
Hd�1)2.
2 Note that we reuse the first letter of ‘‘helix’’ and ‘‘ring’’ here as the
subscripts because Segh and Segr resemble the helix phase and the ring
phase, respectively.
When d 6 s: In the first segment of P1, denoted by
Segh(P1), the labels of all servers have the sth symbol to be
ms

x1
. Similarly, the labels of all servers in Segh(P2) have sth

symbol to be ms
x2

. Because ms
x1

– ms
x2

, these two segments
have no common servers. Moreover, as the switch columns
in those two segments are Ss+1, Ss+2, . . . , Ss�1, according to
Proposition 2.1, we know servers in these two segments
always connect to different switches when they are in the
same server column. So these two segments have no
common switches either.

In Segr(P1), all servers have the (d � 1)th symbol to be
md�1

y1
; all servers in Segr(P2) have the (d � 1)th symbol to be

md�1
y2

. Similarly, because md�1
y1

– md�1
y2

, these two segments
also have no common servers or switches.

For Segh(P1) and SegrðP2Þ; ms
x1

– ms
y or md�1

x – md�1
y2

ensures that they have no common servers or switches.
Similarly, ms

x2
– ms

y or md�1
x – md�1

y1
ensures that Segh(P2) and

Segr(P1) have no common servers or switches. Hence, the
first segment of one path shares no common servers or
switches with the second segment of another path.

When d > s: The proof is similar. h

Next we will show how to pair the n
2 clockwise neigh-

boring servers of source s with the n
2 counter-clockwise

neighboring servers of destination d, so as to yield n
2

node-disjoint paths between s and d.

3 Note that this is purely for generating deterministic pairing of the
servers. One can arbitrarily the remaining n

2� 1
� �

servers in SETs with the
n
2� 1
� �

servers in SETd, and it does not affect the disjointness of those n
2

paths.

2140 Y. Liao et al. / Computer Networks 56 (2012) 2132–2147
4.3. Path construction

Let source server s be at column Hs, destination server d
be at column Hd, and their addresses be ðCs; mk�1

x . . .

ms
x . . . m0

xÞ; Cd; mk�1
y . . . md

y . . . m0
y

� �
, respectively. The addresses

of the n
2 clockwise neighbors of the source are

ðsþ 1; mk�1
x . . . ms

xi
. . . md�1

x . . . m0
xÞ, where i 2 ½0; n

2� 1� and
ms

xi
¼ i. The destination server has n

2 counter-clockwise
neighbors at column Hd�1, whose addresses are d� 1;ð
mk�1

y . . . ms
y . . . md�1

yj
. . . m0

yÞ, where j 2 ½0; n
2� 1� and md�1

yj
¼ j.

For those n
2 servers at Hs+1 and n

2 servers at Hd�1, we first
pair server sþ 1; mk�1

x . . . ms
x� . . . md�1

x . . . m0
x

� �
with server

ðd� 1; mk�1
y . . . ms

y . . . md�1
y�

. . . m0
yÞ, where ms

x� ¼ ms
y and md�1

y�
¼

md�1
x , then arbitrarily pair the rest servers at Hs+1 with the

other servers at Hd�1. This pairing scheme yields n
2 clock-

wise DPillarSP paths between the n
2 servers at Hs+1 and n

2
servers at Hd�1.

Now we show that those n
2 paths between servers in Hs+1

and n
2 in Hd�1 do not share any common servers or

switches. Let P be the path between server ðsþ 1; mk�1
x . . .

ms
x� . . . md�1

x . . . m0
xÞ and server ðd� 1; mk�1

y . . . ms
y . . . md�1

y�
. . . m0

yÞ,
where ms

x� ¼ ms
y and md�1

y�
¼ md�1

x . Let P0 be another path be-

tween server ðsþ 1; mk�1
x . . . ms

xi
. . . md�1

x . . . m0
x Þ and server

ðd� 1; mk�1
y . . . ms

y . . . md�1
yj

. . . m0
yÞ. Since ms

x� – ms
xi

and md�1
y�

–

md�1
yj

, we have ms
y – ms

xi
and md�1

x – md�1
yj

. According to Corol-

lary 4.1, P and P0 cannot have any common servers or
switches. Similarly, we can derive that P0 must be disjoint
to any other path P00 too, where P00 – P.

Algorithm 2. ConstructPairSet((Cs,Ls), (Cd,Ld))

The idea described above leads to a straightforward
algorithm in computing node-disjoint paths in DPillar.
We show the pseudo code in Algorithm 2. This algorithm
first pairs a server in SETs with a server in SETd, where their
sth and (d � 1)th symbols are the same. Then it sorts the
remaining n
2� 1
� �

servers in SETs and n
2� 1
� �

servers in SETd

according to one of the symbols and always pairs the first
element in each set together, so as to yield deterministic
pairing of all servers.3 Algorithm 2 generates n

2 server pairs.
All the clockwise DPillarSP paths between two servers of
these server pairs do not share any common servers or
switches. As we already discussed in Section 4.1, using those
n
2 server pairs, we can have n

2 node-disjoint paths between
source s and destination d. The correctness of Algorithm 2
in producing node-disjoint paths is formally stated as Theo-
rem 4.2 and its detailed proof is provided in Appendix B.
Theorem 4.2. For any two servers s and d in an (n,k) DPillar
network, we pair the clockwise neighbors of s with the
counter-clockwise neighbors of d by following Algorithm 2 to
obtain n

2 clockwise DPillarSP paths between these neighbors.
Those n

2 paths between s and d are node-disjoint.

Note that according to Proposition 3.1, no DPillarSP
path in an (n,k) DPillar network is longer than 2k � 1, so
the length of these n

2 node-disjoint paths between the
source server and the destination server is bounded by
2k + 1.

We have shown how to construct n
2 node-disjoint paths

between a source and a destination in the clockwise direc-
tion. There are also n

2 counter-clockwise node-disjoint
paths between the source and destination servers. That
is, we pair the n

2 counter-clockwise neighbors of source
with the destination’s n

2 clockwise neighbors, and build n
2

node-disjoint counter-clockwise paths. The detailed
scheme is omitted here as it is quite similar to the tech-
nique in building clockwise node-disjoint paths.

4.4. Packet forwarding

After constructing the multiple node-disjoint paths, the
next question is how to enforce a packet to follow one of
those paths. For a packet to follow a path from server s
to server d, the packet traverses a path s ? s0 . . . d0 ? d,
where s0 and d0 are two intermediate servers paired by
the scheme described in Section 4.3. We use tunneling to
embed the information of s0 and d0 into a packet header.
The source selects a path among the set of node-disjoint
paths and adds another header in front of the original
packet, where the source and destination fields in the outer
header are set to s0 and d0, respectively. We call the source
address in the outer header a proxy source, and the destina-
tion address in the outer header a proxy destination. As the
source server is connected directly with the proxy source
server, the source simply forwards the packet to the proxy
source server. Then the packet is forwarded according to
the scheme specified in Algorithm 1 to the proxy destina-
tion server, which will decapsulate the packet and send it
to the destination. Algorithm 3 shows the pseudo-code of
how a server computes the nexthop in forwarding a packet
based on the inner and outer packet headers.

Y. Liao et al. / Computer Networks 56 (2012) 2132–2147 2141
Algorithm 3. Nexthop(c,pkt)
4.5. Applications of multiple node-disjoint paths in DPillar

The multiple node-disjoint paths in DPillar can be uti-
lized to improve the performance of a DPillar network in
various aspects. Here we provide the sample designs on
how to tolerate failures and balance traffic by using the
multiple disjoint paths in DPillar.

4.5.1. Fault-tolerant multi-path routing
The multiple disjoint paths between two servers in

DPillar can be utilized to route traffic in a fault-tolerant
manner. When an application running in a source server
requires fault-tolerant routing from DPillar, the source ser-
ver builds multiple node-disjoint paths between itself and
the destination server before the application starts to send
traffic. After constructing the paths, the source server can
pick one of them to send packets to the destination server.
In order to tolerate failures, the source server should also
proactively monitor the status of those node-disjoint paths
by periodically sending probing messages on each path.
After the destination server receives a probing message,
it replies a probing response message to the source. Upon
receiving the probing response message, the source knows
that the path is working. If an intermediate server receives
a probing message and its nexthop is unreachable, it re-
turns a path failure message to the source. Upon receiving
the path failure message, the source can switch the traffic
to an alternative node-disjoint path.

We should note that monitoring the status of multiple
paths incurs certain overhead to the network because of
using probing messages. Probing paths also takes time as
a message needs to do a round trip between source and
destination servers. Therefore, this proactive probing
scheme is more suitable for applications generating lots
of bulk flows or long-haul flows. For small and short-lived
flows, we can use a more light-weight scheme in utilizing
the multiple node-disjoint paths. Each time an application
in a source server generates traffic to a destination, it tries
a few times in establishing a TCP connection to the desti-
nation.4 When the source server gets the request from an
4 Existing measurement work shows that most of the traffic in data
centers is TCP [7].
application to connect with the destination using TCP, it ran-
domly picks one of the node-disjoint paths to establish the
connection. If the first try of TCP connection fails due to fail-
ure or congestion in the network and the application issues a
re-try request, the source server randomly picks a path
again. As there are multiple node-disjoint paths, it is very
likely that the source server can find a path to bypass the
failure or congestion point after a few tries.

4.5.2. Traffic-aware multi-path routing
The existing of multiple disjoint paths between two

servers also opens the design dimension of balancing traf-
fic load in DPillar. A source generating a bulk or long-haul
flow can periodically send messages on the multiple node-
disjoint paths to the destination, to probe the available
bandwidth on each path, and schedule its flow to the path
with the largest available bandwidth. Because the multiple
paths are node-disjoint, we can easily avoid any hot-spot
in the network.
5. Evaluation

We evaluate DPillar from two different aspects. First,
we implement the DPillar packet forwarding mechanism
in Click software router [2] and study the microscopic
behavior of DPillar by measuring the packet forwarding
overhead of one DPillar server. Our measurements show
that packet forwarding does not cause too much CPU usage
overhead to servers. Second, we study the macroscopic
behavior of DPillar by simulating the packet routing and
forwarding in DPillar networks, using a simulation tool
we developed. Our simulation results show that our rout-
ing scheme performs well even in the presence of a large
number of server and switch failures.

5.1. Implementation and testbed

We have implemented the DPillar routing algorithms
presented in Sections 3 and 4 as an element in kernel mode
Click software router [2]. Our implementation uses an IP
address to encode the column and label information of
one server, so as to provide backward compatibility to
upper layer applications. The most significant 8 bits of
the 32-bit IPv4 address are reserved to represent the col-
umn number of a server. As each host has two NICs, the
least significant bit of the 32-bit IPv4 address is used to
represent the NICs. The k-symbol label consumes kd
log2(n) � 1e bits. The 32-bit IPv4 address is allocated as
shown in Fig. 5.

For example, when using 48-port switches to build a
DPillar network with 4 columns of hosts (the total number
of hosts is about 1.3 million), we need to use 2 bits in the
most significant 8 bits of the IP header to represent the col-
umns. In the remaining 24 bits, we use 4dlog2(48) � 1e +
1 = 21 bits to represent the label of servers and the
interfaces.

Fig. 6 shows the testbed used in our experiments to
evaluate DPillar routing and forwarding element imple-
mented in kernel mode Click. Server P in Fig. 6 is a com-
modity PC with a 2.4 GHz dual-core CPU and 1 GB

Fig. 5. Reusing bits of an IP address to represent the addresses of servers in DPillar.

Fig. 6. The testbed network. Server P runs DPillar packet routing and
forwarding Click element and forwards packets between server A and
server B.

2142 Y. Liao et al. / Computer Networks 56 (2012) 2132–2147
memory. Server A and B are similar machines pumping
traffic into server P.
5.2. Overhead of forwarding packets

We measure its CPU usage when a DPillar server for-
wards traffic for other servers. In this experiment, server
A and B in Fig. 6 use iperf to send out UDP traffic to each
other at various speed, and server P forwards the traffic be-
tween A and B. We record the CPU usage of the Click kernel
thread and plot the results in Fig. 7.

The results in Fig. 7 show that even when the DPillar
server forwards traffic at full load, i.e., 1 Gbps each direc-
tion, 2 Gbps in total, the CPU usage of the DPillar server
is less than 50%. Our server is a dual-core machine and
the less than 50% CPU usage is for one CPU core; the other
core is almost 100% idle. As commodity PCs with multi-
core CPUs are becoming common, we expect the traffic for-
warding overhead can be amortized so that only a small
portion of the total processing power of a multi-core server
is used in traffic forwarding.

It is well known that the amount of CPU cycles used to
forward a packet does not depend on the packet length.
Hence, in a server-centric data center network, one can re-
duce the CPU load and still maintain the throughput by
using larger packets [16]. As jumbo frame packet transfer
Fig. 7. The server CPU usage under various UDP traffic load. The packet
size is 1024 bytes.
is commonly supported in commodity Ethernet switches,5

we can take advantage of this feature to reduce the CPU
usage of DPillar servers in traffic forwarding.

5.3. Path length

We have developed an event-driven simulation tool to
study packet forwarding in DPillar networks. Given the
number of server columns k and the switch port number
n, our simulation tool builds an (n,k) DPillar network
topology and simulates how each server routes packets.

5.3.1. Without failure
We first study the length of paths computed by DPil-

larSP and DPillarMP. We simulate the scenarios where
the DPillar network is built from 16-port switches, i.e.,
n = 16, and the number of server columns k varies. For each
network, we randomly select 10,000 source–destination
pairs and simulate the paths yielded by DPillarSP and
DPillarMP. Fig. 8 plots the results of the average length of
the paths between those 10,000 source–destination pairs.

The results show that the path length is proportional to
the number of server columns in a DPillar network, and it
is always about 20% shorter than the maximum path
length (2k � 1) for DPillarSP and about 25% shorter than
the maximum path length (2k + 1) for DPillarMP. In addi-
tion, compared with DPillarSP, DPillarMP does not inflate
the path length too much. The inflation is always within
2 hops.

5.3.2. With failure
We also study the average length of paths computed by

DPillarMP scheme when there are server failures. Our sim-
ulation includes four DPillar networks of different sizes,
i.e., (16,3) network, (24,3) network, (16,4) network and
(24,4) network. In each simulation instance, we randomly
fail a certain percentage of the total servers. We vary the
ratio of failed servers from 0 to 0.2 (e.g., failure ratio of
0.1 means 10% of the servers have failed). Then we ran-
domly select 10,000 source–destination pairs from those
servers without failures and compute the average length
of the randomly picked working paths (if any) for each pair
yielded by DPillarMP.

Fig. 9 plots the average path length vs. the server failure
ratio. We observe that although there are failures, the path
length is still proportional to the number of server columns
and it slightly decreases as there are more failed servers.
This is because the lengths of the node-disjoint paths for
a source–destination pair can be different. As we randomly
5 The 16-port Gbit switch mentioned in Section 2.5 supports up to 12.2 k
bytes jumbo frame.

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.05 0.1 0.15 0.2Av
er

ag
e

pa
th

 le
ng

th
 (#

 o
f h

op
s)

Server failure ratio

(16,3) network
(24,3) network
(16,4) network
(24,4) network

Fig. 9. Average path length vs. server failure ratio.

 0

 1
 2

 3
 4

 5
 6

 7
 8

 0 100 200 300 400 500Av
g

of

 a
va

ila
bl

e
pa

th
s

pe
r p

ai
r

of failed servers (switches)

server failure
switch failure

Fig. 10. Average number of available paths for one pair.

 4

 6

 8

 10

 12

 14

 16

 4 5 6 7 8 9 10Av
er

ag
e

pa
th

 le
ng

th
 (#

 o
f h

op
s)

k: # of server columns

DPillarSP
DPillarMP

Fig. 8. Average path length for DPillarSP and DPillarMP.

Y. Liao et al. / Computer Networks 56 (2012) 2132–2147 2143
generate failed servers, a shorter path is less likely to fail as
compared with a longer path, because the short path has
fewer servers.
 0.0001

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500

R
ou

tin
g

fa
ilu

re
 ra

tio

of server failures

DPillarMP
DPillarSP

Fig. 11. Routing failure ratio vs. number of server failures.
5.4. Fault tolerance

We also study the performance of DPillarMP in tolerat-
ing failures in the network. In each simulation instance, a
certain number of servers or switches in a (16,3) DPillar
network are randomly chosen as failed ones. We then ran-
domly select 10,000 source–destination pairs from those
servers without failures. For each source–destination pair,
we compute how many paths among the n

2 clockwise dis-
joint paths yielded by DPillarMP are still available. The
average number of available paths among all 10,000
source–destination pairs is plotted in Fig. 10. From
Fig. 10, we see that as there are more server failures or
switch failures, the average number of the available paths
decreases. Switch failures have much larger impact than
server failures, since a switch connects much more links
than a server (n vs. 2).

We further study how the server and switch failures can
impact reachability in DPillar. For a source–destination
pair, if DPillarSP (or DPillarMP) cannot yield a working
path, we say DPillarSP (or DPillarMP) has a routing failure.
In each simulation instance, we randomly select
M = 10,000 source–destination pairs. If M� of them have
routing failures, we say the routing failure ratio of this
scheme is M�

M .
Figs. 11 and 12 plot the routing failure ratio of DPillarSP

and DPillarMP, vs. the number of server failures and the
switch failures, respectively. For both DPillarSP and DPill-
arMP, the routing failure ratio increases as there are more
server failures or switch failures. However, the routing fail-
ure ratio of DPillarMP is much lower than that of DPillarSP
in all cases. DPillarMP does not have any routing failures
even when the number of server failures reaches 300
(20% of total servers), while DPillarSP has 45% routing fail-
ures at this point. When the number of server failures is as
high as 500 (32% of total servers), DPillarMP has only about
0.1% routing failures. Even when the number of switch fail-
ures reaches 20 (10% of total switches), the routing failure
ratio is about 1% only for DPillarMP.
5.5. Server forwarding load under typical traffic patterns

We study the forwarding load of servers under two typ-
ical traffic patterns, i.e., one-to-one communication pat-
tern and all-to-all communication pattern. In the former
pattern, we divide all N servers in a DPillar into N

2 sources
and N

2 destinations. Each source server sends a flow to a
randomly selected destination server. For the latter pat-
tern, we randomly select 1% servers from a DPillar network

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100

R
ou

tin
g

fa
ilu

re
 ra

tio

of switch failures

DPillarMP
DPillarSP

Fig. 12. Routing failure ratio vs. number of switch failures.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 1 2 3 4 5 6 7 8 9

Se
rv

er
 fo

rw
ar

di
ng

 lo
ad

Percentage of servers (%)

Fig. 14. Average server forwarding load in all-to-all communication
pattern when the percentage of participating servers varies. The network
is (16,3) DPillar network. A source server randomly selects a path among
all paths to a destination.

2144 Y. Liao et al. / Computer Networks 56 (2012) 2132–2147
and let each of those N
100 servers send N

100� 1
� �

flows to the
other N

100� 1
� �

servers.
In our experiments, we use the number of flows for-

warded by a server as the measure for its traffic forwarding
load. The distribution of all servers’ traffic forwarding load
is plotted in Fig. 13. We can see in both networks we tested
(a (16,3) network and a (24,3) network), most servers for-
ward a small number of flows. For example, in one-to-one
communication pattern around 95% of servers in both
(16,3) network and (24,3) network forward no more than
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12

C
D

F

of flows one server forwarding

(16,3) network w/ SP
(24,3) network w/ SP
(16,3) network w/ MP
(24,3) network w/ MP

(a) one-to-one communication pattern

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45

C
D

F

of flows one server forwarding

(16,3) network w/ SP
(24,3) network w/ SP
(16,3) network w/ MP
(24,3) network w/ MP

(b) all-to-all communication pattern

Fig. 13. Server traffic forwarding load in typical traffic patterns. Here ‘‘w/
SP’’ means with DPillarSP routing scheme; ‘‘w/MP’’ means with DPillarMP
routing scheme. In DPillarMP routing scheme, the source server randomly
selects one route among all routes.
4 flows using DPillarMP. The most loaded servers forward
no more than 11 flows. Although the total number of flows
in (24,3) network is much more than the total number of
flows in (16,3) network, the server forwarding load does
not have noticeable increase in one-to-one communication
pattern. In all-to-all communication pattern, servers in
(24,3) network need to forward more flows as compared
to servers in (16,3) network, because there are more flows
in (24,3) network as we select 1% of the servers to send out
traffic.

To study how the server forwarding load changes when
more servers participate in all-to-all communication, we
simulate DPillarMP in a (16,3) DPillar where the percent-
age of servers participating in all-to-all communication
ranges from 1% to 9%. We compute the average number
of flows forwarded by servers in the DPillar network and
plot the results in Fig. 14. As expected, when more servers
participate in all-to-all communication, each server needs
to forward more flows. The forwarding load of each server
does not increase faster than the number of flows in the
network. For example, when 3% of the servers participate
in all-to-all communication, each server forwards 5 flows
on average; when 9% of the servers participate in all-to-
all communication, the total number of flows increases
roughly 0:09

0:03

� �2 ¼ 9 times, and the average number of flows
forwarded by each server is 45, which increases 9 times as
well.

6. Background and related work

6.1. Interconnection networks

Server interconnection network has long been an active
research topic. Two categories of interconnection networks
are broadly studied. The first one has a clear boundary be-
tween network and end hosts, where multiple levels of
switches are connected into a switching fabric, and servers
are attached as ‘‘leaves’’ of the switching fabric [4]. Servers
are pure end-hosts, which perform computation and stor-
age tasks only. One network interface is enough for each
server to be connected with other servers.

In the second category of interconnection network,
servers are not only computation/storage workstations

Y. Liao et al. / Computer Networks 56 (2012) 2132–2147 2145
but also intermediate nodes relaying traffic for other serv-
ers. Classic interconnection topologies include full mesh,
hypercube, butterfly, de Bruijn, etc. [19,24,10]. Compared
to connecting servers by a switching fabric, using servers
as relay nodes is often believed to be more flexible in
building the interconnection network, because servers
are much easier to program than switching devices.
6.2. Related work in data center networks

A thread of recent research activities on data center net-
works have proposed several interconnection architec-
tures. The Monsoon network presented in [14] uses a
hierarchical tree-structure switching fabric with two levels
of switches, the top-of-rack switches and the core
switches. The fat-tree network presented in [5] also uses
a switching fabric to connect servers. The switching fabric
of fat-tree network is built from identical switches, so
there is no need to use expensive high-speed core
switches. The switches used in fat-tree should have
layer-3 switching capability and need to be slightly up-
graded in order to make full use of its underlying topology.
A second fat-tree based data center network structure, the
PortLand network, is proposed in [22]. By using hierarchi-
cal pseudo MAC addresses, switches in a PortLand network
can forward traffic as layer-2 packets. Removing layer-3
switching capability from switches can significantly reduce
the cost of building large scale data center networks.

DCell [17] is a server-centric network where a higher le-
vel DCell network is recursively constructed from lower le-
vel DCell networks, and the number of accommodated
servers grows double exponentially as the level increases.
As the number of levels in a DCell network increases, serv-
ers need to install more interfaces. The links in DCell net-
work are not evenly loaded. Those links connecting lower
level DCells are usually more loaded than the links con-
necting higher level DCells. The FiConn network proposed
in [20] uses similar recursive construction technique as
DCell, but requires only two network interfaces in each
server. FiConn also has the unevenly loaded link issue.
BCube [16] is another server-centric network, whose topol-
ogy is closely related to the Hypercube network [19].
BCube has rich connections to support bandwidth
demanding applications running in data centers. But serv-
Table 2
Comparison between different data center interconnection networks. Parameter n
the unit price of a n-port switch. For DCell, FiConn, and BCube, l is depth of recurs

DCell FiConn

Server degree l + 1 2
Bisection width N

4logN
n

N
4�2l

Number of servers ðnþ 1Þ2
l

2lþ2 n
4

� �2l

Number of switches N
n

N
n

Cost of connecting Us
n

Us
n

One server�

Switch upgrade No No
Traffic balance No No
Disjoint paths l + 1 1

� Not including the cost of NICs and cables.
ers in a BCube network need to install more network inter-
faces in order to scale the network size to accommodate
more servers. Table 2 summarizes the key features of dif-
ferent data center interconnection networks.
7. Conclusion

This paper presents DPillar, a data center network
architecture built from commodity hardware. DPillar is a
server-centric architecture and the networking intelligence
is placed in servers. Switches in DPillar are layer-2 plug-
and-play devices, which are cost efficient and widely avail-
able. DPillar can easily scale to a huge number of servers
without imposing any additional requirements to servers,
such as installing more network interfaces. The topology
of DPillar is symmetric and a DPillar network provides rich
connections between servers. We have designed efficient
routing schemes for DPillar. Prototyping implementation
and simulation studies show that our routing schemes
are lightweight, high-performance, and efficient in bypass-
ing failures in the network.

Acknowledgments

The authors are grateful to the editor, Dr. Luigi Iannone,
and the anonymous reviewers for many insightful com-
ments and constructive suggestions. This work is partially
supported by NSF Grants CNS-0917078 and CNS-0831940.
Appendix A. Proof of Proposition 2.3

Our proof is inspired by previous work [8] in studying
the bisection width of butterfly networks. Clearly, if we
cut a (n,k) DPillar network horizontally, i.e., each server
column is cut into halves, we can always cut a DPillar net-
work into a top half and a bottom half by cutting the con-
nections among Hk�1, Sk�1, and H0. For example, we can
divide the DPillar network shown in Fig. 2 into top and bot-
tom halves by cutting the links cross a virtual line between
row (13) and row (20). Because each switch in Sk�1 has n

2
links crossing the virtual cutting line, the total number of
links crossing the virtual cutting line is n

2

� �k�1 � ðn2Þ ¼ ðn2 Þ
k.

Hence, we have an upper bound, n
2

� �k, for the bisection
width of a (n,k) DPillar network.
is the number of ports in each switch; N is the total number of servers; Us is
ion in building the network. For DPillar, k is the number of server columns.

BCube FatTree DPillar

l + 1 1 2
N
2

N
2

N
k

nl+1 n3

4 k n
2

� �k

ðlþ 1Þ N
n 6 N

n k N
n

ðlþ 1Þ Us
n 5 Us

n 2 Us
n

No Yes No
Yes Yes Yes
l + 1 1 n

2

2146 Y. Liao et al. / Computer Networks 56 (2012) 2132–2147
Next we find the lower bound of the bisection width.
Let G be the number of servers in each column of a (n,k)
DPillar network. We consider bisecting the 2G servers in
server columns S0 and Sk�1 by embedding a complete
bipartite graph KG, G into a (n,k) DPillar network so that
the left side nodes and right side nodes of KG,G are mapped
to the servers in S0 and servers in Sk�1 of the (n,k) DPillar
network, respectively. If each of the G servers in S0 has a
path to every server in Sk�1, because DPillar network is
symmetry, there are at most G/2 paths use the same ser-
ver-to-switch link. Also because the bisection width of a
complete bipartite graph KG,G is G2/2, the size of the cut
that bisects the 2G servers in S0 and Sk�1 should be at least
G. Now we consider a minimal cut C that bisects all servers
in a (n,k) DPillar network into Set1 and Set2. If there exist
two neighboring server columns, e.g., Si and S(i+1)%k, where
the 2G servers are bisected by cut C, we know that the size
of cut C is at least G. Otherwise, we find two neighboring
server columns Sj and S(j+1)%k so that among the 2G servers
in those two server columns, more servers are in Set1 than
in Set2. Then we move some servers (among those 2G serv-
ers in server columns Sj and S(j+1)%k) from Set1 to Set2 so that
half of those 2G servers are in Set1. Note that moving the
servers from Set1 to Set2 does not increase the size of cut
C. We already know that bisecting the 2G servers in Sj

and S(j+1)%k requires cutting at least G links. Hence, the size
of cut C has lower bound G ¼ n

2

� �k.
Because both the upper bound and the lower bound is

n
2

� �k, the bisection width of a (n,k) DPillar network is n
2

� �k.

Appendix B. Proof of Theorem 4.2

Without loss of generality, the addresses of s’s clock-
wise neighbors can be represented as ðsþ 1; mk�1

x . . .

ms
xi

. . . md�1
x . . . m0

xÞ, where i 2 0; n
2� 1

� �
and ms

xi
¼ i. The ad-

dresses of d’s counter-clockwise neighbors are denoted as

d� 1; mk�1
y . . . ms

y . . . md�1
yj

. . . m0
y

� �
, where j 2 ½0; n

2� 1� and

md�1
yj
¼ j. Next we divide the theorem into two cases and

prove them one by one.

Case 1: s = d � 1: We have ms
xi
¼ md�1

xi
¼ i and ms

yi
¼

md�1
yi
¼ i, and thus Algorithm 2 will pair server ðsþ 1;

mk�1
x . . . ms

xi
. . . m0

xÞ with server d� 1; mk�1
y . . . ms

yi
. . . m0

y

� �

for i 2 0; n
2� 1

� �
. Let P be the DPillarSP path between

server sþ 1; mk�1
x . . . ms

xi
. . . m0

x

� �
and server d� 1;ð

mk�1
y . . . ms

yi
. . . m0

yÞ, and P0 be the DPillarSP path between

server sþ 1; mk�1
x . . . ms

xj
. . . m0

x

� �
and server d� 1; mk�1

y

�

. . . ms
yj

. . . m0
yÞ, where i – j. It is easy to show both P and

P0 have length k � 1. Furthermore, all servers on P have
the sth symbol to be ms

xi
and all servers on P0 have sth

symbol to be ms
xj

. Because ms
xi

– ms
xj

, these two paths have

no common servers. Moreover, for the servers on these
two paths, s does not equate to the number of the server
column or the number minuses one. By Proposition 2.1,
we know servers of these two paths always connect to
different switches when they are in the same server col-
umn. Therefore, P and P0 have no common servers or
switches.
Case 2: s – d � 1: In this case, the (d � 1)th symbol
md�1

x

� �
of the labels of s’s clockwise neighbors is the

same, and the sth symbol ms
y

� �
of the labels of d’s coun-

ter-clockwise neighbors is the same as well. We let

a ¼ md�1
x and b ¼ ms

y. Then, server sþ 1; mk�1
x . . . ms

xb
. . .

�

md�1
x . . . m0

xÞ and server d� 1; mk�1
y . . . ms

y . . . md�1
ya

. . . m0
y

� �

have the same sth and (d � 1)th symbols. Let P00 be the

DPillarSP path from server sþ 1; mk�1
x . . . ms

xb
. . .

�

md�1
x . . . m0

xÞ to server d� 1; mk�1
y . . . ms

y . . . md�1
ya

. . . m0
y

� �
).

Assume P be the DPillarSP path between server
sþ 1; mk�1

x . . . ms
xe

. . . md�1
x . . . m0

x

� �
and server d� 1;ð

mk�1
y . . . ms

y . . . md�1
yg

. . . m0
yÞ, and P0 be the DPillarSP path

between server sþ 1; mk�1
x . . . ms

xf
. . . md�1

x . . . m0
x

� �
and ser-

ver d� 1; mk�1
y . . . ms

y . . . md�1
yh

. . . m0
y

� �
, where b – e – f and

a – g – h. We have ms
xe

– ms
y, and ms

xf
– ms

y. According to

Corollary 4.1, P and P0 have no common servers or
switches. We also have md�1

x – md�1
yg

, and ms
xf

– ms
y.

According to Corollary 4.1, P00 and P have no common
servers or switches either. Similarly, we can prove P00

and P0 have no common servers or switches.

We have shown that all the DPillarSP paths between
two servers of the server pairs constructed by Algorithm
2 have no common servers or switches. Therefore, those n

2
paths (each path via one server pair) between s and d are
node-disjoint. The proof completes.

References

[1] Amazon elastic compute cloud. <http://aws.amazon.com/ec2/>.
[2] The click modular router project. <http://read.cs.ucla.edu/click/>.
[3] Microsoft windows azure platform. <http://www.microsoft.com/

windowsazure>.
[4] Cisco data center infrastructure 2.5 design guide, December 2007.

<http://www.cisco.com/application/pdf/en/us/guest/netsol/ns107/
c649/ccmigration_09186a008073377d.pdf>.

[5] M. Al-Fares, A. Loukissas, A. Vahdat, A scalable, commodity data
center network architecture, in: Proceedings of SIGCOMM’ 08, 2008.

[6] R. Banner, A. Orda, Multipath routing algorithms for congestion
minimization, IEEE/ACM Trans. Netw. 15 (2007) 413–424.

[7] T. Benson, A. Akella, and D. A. Maltz, Network traffic characteristics
of data centers in the wild, in: IMC ’10: Proceedings of Internet
Measurement Conference, 2010.

[8] C. Bornstein, A. Litman, B. Maggs, R. Sitaraman, T. Yatzkar, On the
bisection width and expansion of butterfly networks, in: Parallel
Processing Symposium, 1998. IPPS/SPDP 1998. Proceedings of the
First Merged International Symposium on Parallel and Distributed
Processing, 1998, pp. 144–150.

[9] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M.
Burrows, T. Chandra, A. Fikes, R.E. Gruber. Bigtable: a distributed
storage system for structured data, in: OSDI ’06: Proceedings of the
7th Symposium on Operating Systems Design and Implementation,
Berkeley, CA, USA, 2006. USENIX Association, pp. 205–218.

[10] W.J. Dally, B.P. Towles, Principles and Practices of Interconnection
Networks, Morgan Kaufman, 2004.

[11] J. Dean, S. Ghemawat, MapReduce: simplified data processing on
large clusters, in: OSDI ’04: Proceedings of the 5th Symposium on
Operating Systems Design and Implementation, 2004, pp. 137–150.

[12] D. Ganesan, R. Govindan, S. Shenker, D. Estrin, Highly-resilient,
energy-efficient multipath routing in wireless sensor networks,
SIGMOBILE Mob. Comput. Commun. Rev. 5 (2001) 11–25.

http://aws.amazon.com/ec2/
http://read.cs.ucla.edu/click/
http://www.microsoft.com/windowsazure
http://www.microsoft.com/windowsazure
http://www.cisco.com/application/pdf/en/us/guest/netsol/ns107/c649/ccmigration_09186a008073377d.pdf
http://www.cisco.com/application/pdf/en/us/guest/netsol/ns107/c649/ccmigration_09186a008073377d.pdf

Y. Liao et al. / Computer Networks 56 (2012) 2132–2147 2147
[13] S. Ghemawat, H. Gobioff, S.-T. Leung, The google file system, SOSP
’03: Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles, ACM Press, New York, NY, USA, 2003, pp. 29–43.

[14] A. Greenberg, P. Lahiri, D.A. Maltz, P. Patel, S. Sengupta, Towards a
next generation data center architecture: scalability and
commoditization, in: PRESTO ’08: Proceedings of the ACM
Workshop on Programmable Routers for Extensible Services of
Tomorrow, New York, NY, USA, 2008. ACM, pp. 57–62.

[15] A.G. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D.A. Maltz, P. Patel, S. Sengupta, Vl2: a scalable and flexible data
center network, in: ACM SIGCOMM Conference, 2009, pp. 51–62.

[16] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, T. Chen, Y. Zhang, S. Lu,
BCube: a high performance, server-centric network architecture for
modular data centers, in: Proceedings of SIGCOMM’ 09, 2009.

[17] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, S. Lu, Dcell: a scalable and
fault-tolerant network structure for data centers, in: Proceedings of
SIGCOMM’ 08, 2008.

[18] J. He, J. Rexford, Toward internet-wide multipath routing, Network,
IEEE 22 (2) (2008) 16–21.

[19] F.T. Leighton, Introduction to Parallel Algorithms and Architectures:
Arrays. Trees. Hypercubes, Morgan Kaufman, 1992.

[20] D. Li, C. Guo, H. Wu, K. Tan, Y. Zhang, S. Lu, FiConn: Using backup
port for server interconnection in data centers, in: Proceedings of
INFOCOM’ 09, 2009.

[21] Y. Liao, D. Yin, L. Gao, Dpillar: Scalable dual-port server
interconnection for data center networks, in: Proceedings of ICCCN
2010: the 19th International Conference on Computer
Communications and Networks.

[22] R.N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S.
Radhakrishnan, V. Subramanya, A. Vahdat, Portland: a scalable fault-
tolerant layer 2 data center network fabric, in: Proceedings of
SIGCOMM’ 09, 2009.

[23] L. Rabbe, Powering the Yahoo! network, November 2006. <http://
ycorpblog.com/2006/11/27/powering-the-yahoo-network>.

[24] M.R. Samatham, D.K. Pradhan, The de bruijn multiprocessor
network: a versatile parallel processing and sorting network for
VLSI, IEEE Trans. Comput. 38 (4) (1989) 567–581.

Yong Liao graduated with a BS degree in 2001
from University of Science and Technology of
China. In 2004, he received his MS degree
from the Graduate School of Chinese Academy
of Sciences. Since fall 2004, he has been
working as research assistant in University of
Massachusetts at Amherst, where now he is a
PhD candidate in the Electrical and Computer
Engineering department. His current research
interests include inter-domain routing, data
center network, and network virtualization.
Jiangtao Yin received a BE degree from Bei-
jing Institute of Technology, China, in 2006,
and his ME degree from Beijing University of
Posts and Telecommunications, China, in
2009. Since fall 2009, he has been working as
research assistant in University of Massachu-
setts at Amherst, where he is currently pur-
suing the PhD degree in electrical and
computer engineering department. His cur-
rent research interests include data center
network and data-intensive computing.
Dong Yin is a PhD student at Northwestern
Polytechnical University (NWPU), Xi’an,
Shanxi, China, whose major is Control Theory
and Engineering. He received the bachelor
degree in Information Security and the master
degree in Automatic Control and Engineering
from NWPU in 2004 and 2007, respectively.
From October 2009 to October 2010, he had
been a visiting student in department of
Electrical and Computer Engineering at Uni-
versity of Massachusetts at Amherst, sup-
ported by China state scholarship fund. His

research interests include Network virtualization and information secu-
rity.
Lixin Gao is a professor of Electrical and
Computer Engineering at the University of
Massachusetts at Amherst. She received her
PhD degree in computer science from the
University of Massachusetts at Amherst in
1996. Her research interests include multi-
media networking, Internet routing and
security. Between May 1999 and January
2000, she was a visiting researcher at AT&T
Research Labs and DIMACS. She is an Alfred P.
Sloan Fellow, an IEEE Fellow and received an
NSF CAREER Award in 1999. She has served on

number of technical program committees including SIGCOMM2006,
SIGCOMM2004, SIGMETRICS2003, and INFOCOM2004, and is on the
Editorial Board of IEEE Transactions on Networking.

http://ycorpblog.com/2006/11/27/powering-the-yahoo-network
http://ycorpblog.com/2006/11/27/powering-the-yahoo-network

	DPillar: Dual-port server interconnection network for large scale data centers
	1 Introduction
	2 DPillar interconnection
	2.1 Logical representation of DPillar network
	2.2 Addressing servers in DPillar
	2.3 Connecting servers via switches
	2.4 Topological properties
	2.4.1 Number of servers
	2.4.2 Bisection width

	2.5 Cost efficiency
	2.6 Contrasting DPillar with wrapped butterfly network
	2.6.1 Number of ports in servers
	2.6.2 Network diameter
	2.6.3 Network bisection width

	3 Single-path routing
	3.1 Two-phase packet forwarding
	3.2 Length of the path computed by DPillarSP

	4 Multi-path routing
	4.1 The basic idea
	4.2 Disjoint paths in DPillar
	4.3 Path construction
	4.4 Packet forwarding
	4.5 Applications of multiple node-disjoint paths in DPillar
	4.5.1 Fault-tolerant multi-path routing
	4.5.2 Traffic-aware multi-path routing

	5 Evaluation
	5.1 Implementation and testbed
	5.2 Overhead of forwarding packets
	5.3 Path length
	5.3.1 Without failure
	5.3.2 With failure

	5.4 Fault tolerance
	5.5 Server forwarding load under typical traffic patterns

	6 Background and related work
	6.1 Interconnection networks
	6.2 Related work in data center networks

	7 Conclusion
	Acknowledgments
	Appendix A Proof of Proposition 2.3
	Appendix B Proof of Theorem 4.2
	References

