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• We generalize a class of big data analytics workload (Re-Org) on ordered datasets.
• We propose a novel distributed mechanism for efficiently executing Re-Org tasks.
• The proposed mechanism is implemented in a distributed framework by extending Hadoop.
• A model is presented to formally study the proposed framework.
• Experiments show that our framework is 6.3x faster than vanilla Hadoop.
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a b s t r a c t

One of the most common datasets exploited by many corporations to conduct business intelligence
analysis is event log files. Oftentimes, the records in event log files are temporally ordered, and need
to be grouped by certain key with the temporal ordering preserved to facilitate further analysis. One
such example is to group temporally ordered events by user ID in order to analyze user behavior. This
kind of analytical workload, here referred to as RElative Order-pReserving based Grouping (Re-Org),
is quite common in big data analytics, where the MapReduce programming paradigm (and its open-
source implementation, Hadoop) is widely adopted for massive parallel processing. However, using
MapReduce/Hadoop for executing Re-Org tasks on ordered datasets is not efficient due to its internal
sort–merge mechanism when shuffling data from mappers to reducers. In this paper, we propose a
distributed framework that adopts an efficient group-order–mergemechanism to speed up the execution
of Re-Org tasks. We demonstrate the advantage of our framework by formally modeling its execution
process and by comparing its performance with Hadoop through extensive experiments on real-world
datasets. The evaluation results show that our framework can achieve up to 6.3x speedup over Hadoop in
executing Re-Org tasks.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Large corporations, such as Google, Amazon, and Facebook,
routinely produce and collect terabytes of data on a daily basis, and
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continually improve their services and operations by analyzing the
data. Completing the analysis of data at the scale of terabytes or
even petabytes in a short time becomes a daunting task.

A large class of datasets used to gain business intelligence are
often fundamentally temporal, such as webpage click streams,
network traffic traces, and business transactions. Furthermore, a
lot of analytical tasks over such temporal data require to group
data points of a certain feature together and impose the temporal
ordering on the data points in the same group. Such a processing is
a vital step in many important analytical jobs, including:
• User sessionization [6,18]: widely used in recommendation

systems, behavioral targeting advertisement display, and
personalized web services.
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• Flow construction [28,5]: broadly utilized in traffic engineering
and network security.

• Customer statement generation [14,8]: applied to billing, fraud
detection, and risk analytics.

The input datasets for the above tasks can be generally seen
as event log files, where each record is about an event. An event
usually has some attributes, such as the event type, the event
origin, and a timestampofwhen the event happened. Suchdatasets
often have an important property. That is, as a dataset is generated,
the records in the dataset are already placed in certain order. For
event log files, the ordering is often based on the timestamps of the
events because earlier events are recorded before events occurring
later.

In general, an input dataset in big data analytics with the same
property as event log files can be represented as a list of records.
Each record consists of a primary key, a secondary key, and a value.
The records in the input dataset are already ordered by their
secondary keys (e.g., timestamps). For such an input dataset, we
define RElative Order-pReserving based Grouping, or Re-Org, as a
processing that generates a set of output data points, each ofwhich
is a group of input records. Further, those groups of input records
should satisfy the following requirements: (1) records are grouped
based on their primary keys; (2) all the records in a group are
ordered by their secondary keys.

Since a Re-Org task usually involves a huge quantity of data,
parallelizing its execution is necessary (or at least desirable).
MapReduce [12] has emerged as a popular scalable distributed
framework for data intensive computation. It provides a simple
programming model to allow a user to focus on the business logic
in the analytics without worrying about the complexity of parallel
computation. However, realizing Re-Org tasks usingMapReduce is
not efficient. MapReduce groups data by their keys via utilizing an
internal sort–merge scheme, which cannot take advantage of the
fact that the input records for Re-Org tasks are already placed in
the order of the secondary key. To enable records with the same
primary key to be sorted by their secondary keys, one has to rely on
time-consuming sorting either in custom code or by instrumenting
MapReduce to do so.

In this paper, we propose a group-order–merge mechanism for
efficiently realizingRe-Org tasks in a distributed environment. Our
proposed mechanism maximally utilizes the property of the input
datasets to speed up the execution of Re-Org tasks. It efficiently
utilizes hash techniques in grouping records on their primary keys
and preserving the relative order of records with the same primary
key. The hash table used in our mechanism is also designed to
provide a lightweight way for imposing a global ordering of the
grouped records acrossmultipleworker nodeswith limited sorting
operations. The global ordering is utilized later when records
are merged in parallel by different worker nodes to yield record
groups, where each group has all records with the same primary
key and the records are ordered by their secondary keys.

We have built a distributed framework for supporting the
group-order–merge mechanism by extending Hadoop [4], the
most popular open-source implementation of MapReduce. Our
framework is referred to as Group-Order–Merge Hadoop (GOM-
Hadoop). To avoid memory overflow, the hash techniques uti-
lized in the group-order–merge mechanism are implemented
with bounded memory usage. Moreover, GOM-Hadoop retains all
salient features of vanilla Hadoop, such as fault-tolerance, specu-
lative execution, and data locality. We demonstrate the advantage
of GOM-Hadoop (forRe-Org tasks) by formallymodeling its execu-
tion process.We evaluate it by implementing different types of Re-
Org taskswith real-world datasets on a local cluster ofmachines as
well as on Amazon EC2 Cloud [3]. The evaluation results show that
GOM-Hadoop can achieve up to 6.3x speedup over vanilla Hadoop.
Fig. 1. Sampled click stream data. IP addresses are mapped to integers.

The rest of the paper is organized as follows. Section 2 formally
defines the problem targeted by this paper. Section 3 briefly sur-
veys how the problem is solvedwith existing techniques. Section 4
presents our scheme for efficiently executing Re-Org tasks in a dis-
tributed environment. The framework for supporting the proposed
scheme is presented in Section 5. An analyticalmodel of the frame-
work is provided in Section 6. Section 7 presents the evaluation
results. Section 8 surveys related work. Section 9 concludes this
paper.

2. Problem definition

In this section, we first describe a series of well-known
applications that our framework targets. We then formulate them
into one general problem.

2.1. Motivating applications

Click stream analysis. Many companies have web services
and are interested in analyzing the click stream logs of their
websites, which can provide tremendously valuable information.
For instance, one can detect customer click patterns from the click
stream data, and such click patterns are used for advertisement
promotion, revenue prediction, and service personalization. One
common step of analyzing the click stream data is to divide users’
clicks into sessions [6,18]. Usually, a session consists of a user’s
temporally ordered clicks and is considered to be finished if the
user has no clicks for some time duration (e.g., 5 min). Intelligence
that can be gathered fromsessionized clicks includes: the sequence
of clicks in a session represents the fine-grained navigational
behavior of a user; the session durations show how much time a
user spends on the website each time; the last accessed pages of
those sessions (i.e., ‘‘killer pages’’) give some hints on why a user
leaves.

Network traffic analysis. ISPs and enterprise ITs often use tools
such as Cisco NetFlow [11] to extract metadata about the traffic
in their networks. Various networkmanagement and optimization
tasks rely on analytics on the metadata. The metadata analytics
often needs to group them based on certain criteria, such as
grouping the metadata for flows from a common source. It is
also often needed to sort those grouped metadata based on the
timestamp because a lot of analytics tasks, such as malicious
behavior detection, require correlating metadata at different time.

Customer statement generation. Banks and e-commerce
companies usually need to divide their customer transactions
into statements in their business operations. Transactions of
each customer are grouped together and then sorted by their
timestamps. The generated customer statements can be applied to
billing, fraud detection, and risk analytics [14,8].

2.2. Formal problem setting

The input datasets for the above applications can be seen as
event log files. In general, such an input dataset can be parsed as
a list of records. Each record consists of a primary key, a secondary
key, and a value. The records in the input dataset are already sorted
by their secondary keys. Take the click stream data for example. As
presented in Fig. 1, each click can be seen as a record, where the
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source IP can be considered as the primary key, the timestamp as
the secondary key, and other attributes of the click as the value.
These clicks are sorted by their timestamps.

We define RElative Order-pReserving based Grouping mecha-
nism, or Re-Org, as a processing that generates a set of output data
points, each ofwhich is a group of records from the input dataset. All
the records with the same primary key are in and only in one out-
put data point, and all the records in an output data point are sorted
by their secondary keys. Take user sessionization for example. All
the clicks belonging to one user can be seen as one output data
point. Note that one may further apply a user-defined aggregation
operation to output data points so as to produce final results. In
user sessionization, we further split a user’s clicks into sessions by
traversing them in the order of timestamp (with a timeout thresh-
old).

Now we give the formal definition of a Re-Org task. The input
dataset of a Re-Org task can be parsed as a list of records:

Rin = [r0, r1, . . . , rn]. (2.1)

Each record ri ∈ Rin consists of a primary key pi, a secondary key si,
and a value vi, i.e., ri = {pi, si, vi}. Any two records ri and rj in Rin
are already ordered by their secondary keys. Let ≼ represent the
ordering. We have

si ≼ sj ⇐⇒ i < j, ∀ri, rj ∈ Rin. (2.2)

The output is a set of data points, which is represented as

Rout = {ĝ0, ĝ1, . . . , ĝm}. (2.3)

Each output data point ĝi in Rout is a group of input records with
the same primary key, i.e., ĝu = [ru0 , ru1 , . . . , ruk ] where

pui = puj ⇐⇒ rui ∈ ĝu and ruj ∈ ĝu. (2.4)

Furthermore, the records of an output data point are in the order
defined by the secondary key:

sui ≼ suj ⇐⇒ i < j, ∀rui , ruj ∈ Gu. (2.5)

3. Existing MapReduce support for RE-ORG tasks

In this section, we discuss how to implement Re-Org tasks
on Hadoop, an open-source framework for running MapReduce
jobs. To ground our discussion, we begin with an overview of the
MapReduce programming model and Hadoop. Then, we present
two commonly adopted mechanisms to implement Re-Org tasks
on MapReduce/Hadoop and point out their issues.

3.1. MapReduce/Hadoop

MapReduce, a popular distributed programming model for
processing massive datasets in a cluster of commodity ma-
chines, has attracted a lot of attention over the past several
years [13,19,38,39,37,1,16,2,7,27,15,25,26,9,17,20,24,21,33,23,10,
22,29,34,30,40,35,36].

The essential functionality of the MapReduce programming
model is to group data by key. The MapReduce programming
model consists of two functions, the map() function and the
reduce() function. Hadoop is the most popular open-source
implementation of MapReduce. It leverages a sort–merge scheme
to group data by key. Hadoop runs a MapReduce job by dividing it
into two phases: the mapper phase and the reducer phase. When
a mapper reads a trunk of data from HDFS (Hadoop Distributed
File System), its map() function is called to produce a set of
intermediate key–value pairs. Each intermediate key–value pair is
assigned with a partition number, which is generated by applying a
partition function to the key. Each partition number corresponds to
one reducer.

Those key–value pairs are serialized into an in-memory buffer
of the mapper. When the buffer is full, Hadoop performs sorting
on the key–value pairs with partition numbers (using quicksort
by default). The sorting orders those key–value pairs first by their
partition numbers and then by their keys. A key comparator is used
to determine which key is ‘‘larger’’ when comparing two keys.
The sorted key–value pairs are written into a local disk as a spill
file. Multiple spill files are merged together as the mapper output.
A reducer merges the sorted outputs of different mappers it has
fetched and groups key–value pairs with the same key through
a grouping comparator. Then, the reducer passes the key of each
group and the list of values within that group to its reduce()
function.

3.2. Basic MapReduce approach

For input dataset Rin = [r0, r1, . . . , rn], the basic implementa-
tion of Re-Org on Hadoop is as follows. A map() function trans-
forms each input record (e.g., ri = {pi, si, vi}) into one intermediate
key–value pair, where the key is the primary key of the record (pi),
and the value consists of the secondary key of the record (si) and its
value (vi). In other words, the output of one map() function is a set
of intermediate key–value pairs denoted as [{pi, (si, vi)}]. Hadoop
ensures that all the key–value pairs with the same key are fed into
the same reduce() function. In the reduce() function, one can
have custom code to buffer values and to sort all values based on
the secondary key. However, when a reducer receives a large num-
ber of values for a given key, it may run out of memory. As a result,
this approach is not scalable.

3.3. Hadoop secondary sort

Hadoop has a built-in scheme for imposing order on the values.
The scheme is usually referred to as Hadoop secondary sort [31]. In
order to realize a Re-Org task using Hadoop secondary sort, a user
needs to define the map() function to transform each input record
(e.g., ri = {pi, si, vi}) into one intermediate key–value pair as well.
Within an intermediate key–value pair, the key consists of the
record’s primary key (pi) and its secondary key (si), and the value
is the record’s value (vi). Since the key produced by the map()
function is a composition of the primary key and the secondary
key, it is often called the composite key. Then, by customizing the
key comparator, the user instruments Hadoop to sort key–value
pairs based on the composite keys: first by the primary key and
then by the secondary key. In order to enable that key–value
pairs with the same primary key will be processed by the same
reducer, the user needs to define a new partition function to assign
a partition number according to the primary key only. In addition,
the user needs to provide a customized grouping comparator to
group key–value pairs via their primary keys only. As a result, all
the values with the same primary key are sorted by the secondary
key when fed into the reduce() function.

Although both of the aforementioned approaches can realize
a Re-Org task, the sort–merge mechanism in the current
MapReduce/Hadoop framework introduces unnecessary overhead.
It does not utilize the fact that the input records are already placed
in the order of the secondary key.

4. Our solution for RE-ORG tasks

In this section, we present our solution for realizing a Re-
Org task in a distributed environment, maximally utilizing the
property of the input dataset to speed up the process. We first
describe the challenges of realizing a Re-Org task in a distributed
environment and then illustrate how to efficiently solve those
challenges.
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Fig. 2. Basic workflow of the proposed group-order–merge mechanism.

4.1. Challenges of distributed RE-ORG

A Re-Org task needs to group records by their primary keys
and to enable records in a group to be sorted by their secondary
keys. As the input records are already sorted by the secondary key,
a Re-Org task can be easily done in the single machine scenario.
For instance, the machine sequentially parses each record from
the input dataset and puts them into a hash table by hashing
on their primary keys. Then, each entry of the hash table has
all records associated with one primary key. Since records are
processed sequentially, each entry also preserves the ordering of
the records from the input dataset (sorted by the secondary key).

However, it is challenging to realize a distributed Re-Org task.
To support parallel processing, the input dataset is often divided
into multiple pieces and multiple workers process those pieces in
parallel. Although each worker can group input records using a
simple hashing technique as in the above single machine case, an
entry in its hash table may not have all the records associated with
a primary key. In other words, the records with the same primary
key can scatter in differentworkers. Accordingly,we need tomerge
the hashing results from different workers so that all the records
with the same primary key are in the same group. In addition,
records in the merged group need to be sorted by their secondary
keys. Efficientlymerging the hashing results frommultiple workers
and restoring the order of records in each merged group are the
challenges in realizing a distributed Re-Org task.

4.2. Logical workflow of GOM-Hadoop

We propose a novel group-order–merge mechanism to effi-
ciently support Re-Org tasks in a distributed environment. Our
proposedmechanism consists of three phases: the group phase, the
order phase, and the merge phase. A high-level illustration of our
mechanism is presented in Fig. 2.

The input dataset is first split into chunks. Each data chunk is
assigned to a logical worker to process. Note that our mechanism
does not require the input dataset to be stored in one single
file. As long as each chunk is a consecutive block of the input
dataset, our mechanism will be applicable. In the group phase,
a worker sequentially extracts the records from its input chunk
and groups the records by applying a two-level hashing technique
on their primary keys. The output of the group phase is a set of
segments. The reason a worker produces multiple segments is that
multiple segments can support parallel processing (e.g., parallel
merging). Each segment contains a set of lists. Each list has all the
records in that chunkwith the sameprimary key, and those records
preserve the ordering they have in the chunk (because the worker
sequentially processes records).

The ordering is then applied on each segment so that the set
of lists in the segment can have some global ordering based on
their primary keys. This ordering is important for efficientmerging
of segments produced by different workers. Note that each list is
Fig. 3. Grouping records by their primary keys via hashing.

treated as awhole in the order phase, which ismuchmore efficient
than treating each record individually. After the order phase is
done, the worker sends all its segments to another set of workers.
The segments are sent out in a manner that all lists whose records
have the same primary key will be received by the same worker.

Workers in the merge phase process the segments produced in
the order phase, merge the records with the same primary key into
one final list, and ensure the records in the list preserving their
relative ordering. Then the user-defined aggregation operation is
applied to the final list to generate the final result. The aggregation
operation is not part of the proposed mechanism but constitutes
the implementation of the actual analytical task.

In the rest of this section, we present the detailed description
onhowour group-order–merge schemeworks. Its implementation
details will be presented in Section 5.

4.3. Grouping via hashing primary keys

The group phase groups records from one input chunk via two-
level hashing on their primary keys. The first hash function, shown
as f 1() in Fig. 3, disperses records into a fixed number (nb) of
hash buckets, where each bucket corresponds to one segment. The
records hashed into bucket j by f 1() are stored in a logical hash
table HT j. The table has an array of entries. Each entry is associated
with an integer index. We leverage another hash function f 2()
(independent of f 1()) to map the primary key of a record to an
entry index in the table. For simplicity of exposition, we assume
hash function f 2() can perform a 1-to-1 mapping so that an entry
in the logical hash table has only those records with the same
primary key. A new record is always appended to the tail of the
corresponding entry in the hash table. Since records are processed
sequentially and they are already ordered by the secondary key,
the records in each entry preserve the ordering on their secondary
keys.

Note that here we assume all records from one chunk can fit in
a worker’s memory for the sake of easy explanation. In Section 5.1,
we will show that our mechanism is actually implemented with
bounded memory usage.

4.4. Hash assisted ordering

The order phase streams out those nb hash tables populated in
the group phase to a local disk. Each hash table is streamed out
as one segment. For hash table HT j, the order phase imposes the
ordering of its entries through ordering their indexes in the table
when the entries are streamed out to a local disk. The order of
record lists in each segment is important for efficient merging of
segments. Without the ordering, our merge phase cannot simply
use the linear time merge part of the merge–sort algorithm. Since
the order of the record lists in a segment is based on the hashcodes
(indexes of a hash table), we call it hash-based order.

Once a worker finishes generating the ordered segments, it
sends them to another set of workers. The segments are sent out
in a way that the jth segments of all workers running in the order
phasewill be sent to the sameworker (i.e., worker j) running in the
merge phase.
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Note that in the ideal scenario without hash collision, the
hash assisted ordering on record lists can completely avoid
comparisons on primary keys when producing ordered segments.
In reality, hash collision is inevitable so we need comparisons on
primary keys in some cases. In Section 5.2, we will present our
implementation which can yield ordered segments with minimal
primary key comparisons.

4.5. Relative order based merge

The merge phase merges multiple segments into one final
stream, where the records with the same primary key are consoli-
dated into one final list. Records in the final list are ordered by their
secondary keys.

We adopt the idea of merge–sort to efficiently merge multiple
segments, since record lists in those segments are already in
the hash-based order. Besides, because different segments are
generated from different data chunks and the input dataset is
ordered by the secondary key, all secondary keys in segment i
should be either ‘‘larger’’ or ‘‘smaller’’ than all secondary keys in
segment j. Therefore, one sorting can put the segments in an order
based on the secondary keys of those records in them.

Oncewehave a sorting of those segments,we can start tomerge
them. During the merging, we always pick the lists at the heads of
each segment and move the ‘‘smallest’’ one (the record with the
‘‘smallest’’ primary key or the recordwith the ‘‘smallest’’ secondary
key when more than one record has the ‘‘smallest’’ primary key)
into the stream.

5. Framework implementation

In this section, we present the implementation of our GOM-
Hadoop framework for efficiently executing Re-Org tasks. Our
GOM-Hadoop framework extends Hadoop to incorporate the
group-order–merge scheme described in Section 4 as an alter-
native shuffle mechanism to its default sort–merge mechanism.
Here, the shuffle mechanism means the whole process from the
point where the map() function produces key–value pairs to the
point where the reduce() function consumes these key–value
pairs. Essentially, our GOM-Hadoop framework brings new imple-
mentation to MapReduce rather than improves its semantics. Our
GOM-Hadoop framework can also execute ordinary Hadoop jobs
with negligible overhead. The difference between GOM-Hadoop
and vanilla Hadoop is that GOM-Hadoop uses a different way
(i.e., the hash-based technique) to implement the shuffle mech-
anism. Furthermore, GOM-Hadoop retains all salient features of
vanilla Hadoop, such as fault-tolerance, speculative execution, and
data locality, even when executing a Re-Org task. As a result,
GOM-Hadoop also inherits the scalability and reliability proper-
ties of vanilla Hadoop. The prototype implementation of our GOM-
Hadoop framework is based on Hadoop version 1.0.3.

5.1. Mapper side grouping

When aRe-Org task is realized usingGOM-Hadoop, themapper
is instrumented to use only the primary key of each input
record as its output key, and to use the secondary key and the
record’s value as its output value. The key–value pairs produced
by the map() function are serialized into a memory buffer. Each
key–value pair in the buffer is assigned a partition number by
applying a partition function to the key. Each key–value pair is also
assigned an index for quick lookup in the buffer. The key–value
pairs’ partition numbers and indexes are stored in an auxiliary
memory buffer. When either one of these two buffers reaches
its maximum capacity, our implementation uses the hash-based
technique presented in Section 4.3 to group the key–value pairs’
indexes (by hashing key–value pairs but storing their indexes). It
is important to note that the buffers will not accept new key–value
pairs/indexes until their contents are spilled out to a local disk.
Hence, there is no memory overflow problem. Additionally, since
a hash table stores indexes instead of the actual key–value pairs
and the size of an index is typically much smaller than that of a
key–value pair, thememory overhead of the hash-based technique
is small. In this group phase, each index is first put into a hash
bucket by reusing its corresponding partition number as the hash
key (i.e., the partition function is used as hash function f 1() in
Fig. 3).

For indexeswith the same partition number, we design a logical
hash table to store them. The logical hash table has a fixed number
(ns) of slots, and each slot has a small hash table. The logical hash
table first utilizes a hash function h1() to disperse the indexes into
slots via hashing on their corresponding keys. The indexes entering
one slot are stored in one small hash table, which uses another
independent hash function h2() to map between the indexes’
corresponding keys and its entries. Each entry stores indexes for
one key, and the hash table uses separate chaining to resolve
hash collision. An index is always appended to the tail of the
corresponding entry.

5.2. Mapper side ordering

The order phase picks the indexes stored in hash tables in
certain order and streams out their corresponding key–value pairs
into a spill file. In this way, key–value pairs in the spill file are
ordered (i.e., in the hash-based order), as illustrated in Section 4.4.

The indexes are picked in the following way. Indexes in bucket
i (for partition i) are picked before the indexes in bucket j (for
partition j), if i < j. In each bucket, the indexes are already ordered
across slots, i.e., indexes in slot e have smaller hashcodes generated
by hash function h1() than indexes in slot f if e < f . Therefore,
indexes in slot e are picked before the indexes in slot f , if e < f .
However, to save space, the small hash table of each slot has a
dynamic number of entries, and thus it does not support a fixed
order of its entries over time (because it might be rehashed). In
order to obtain a fixed order of a small hash table’s entries, the
order phase orders the entries by sorting the corresponding keys.
For efficiency, it sorts their hashcodes given by hash function h2()
first and then sorts the keys themselves. After sorting, entries
are picked by following their sorted order. The order phase uses
each entry to generate a list of key–value pairs in the spill file via
streaming out the key–value pairs indexed by the entry.

For each generated spill file, the key–value pairs are divided
into partitions. In each partition, the pairs are ordered by the key
in hash-based order, and those with the same key preserve their
original relative ordering.

5.3. Mapper side merging

Similar to the behavior of vanilla Hadoop, merging of spill files
happens at both the mapper side and the reducer side in GOM-
Hadoop. At the mapper side, multiple spill files generated in the
order phase are merged into one single output file. Depending
on the merge parameter, multiple merging rounds might occur.
Since each spill file already has the key–value pairs ordered in the
order phase, the merging can be done by using the merge part of
the merge–sort algorithm. That is, the mapper side merging can
linearly scan each spill file in an interleaved way and pass the
‘‘smallest’’ one of all the currently encountered key–value pairs to
the output file.

If two records have the same primary key, we need to use
their secondary keys to determine which one is ‘‘smaller’’. Note
that because a mapper sequentially processes records in an input
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chunk, the key–value pairs in the (i+ 1)th spill file are guaranteed
to have a ‘‘smaller’’ secondary key than the key–value pair in the
ith spill file. To this end, each key–value pair is extended to a
triple tuple, which includes a counter. The counter remembers the
number of spill files the mapper already generated. The counter
can be used to determine the order of tuples (key–value pairs)
fromdifferent spill files. A smaller counter valuemeans a ‘‘smaller’’
secondary key. Moreover, since it is an integer, the counter takes
only a few bytes and thereby incurs negligible space overhead.

After a mapper merges all its spill files into one single output
file, the partitions in that output file are sent to reducers. Similar
to the behavior of vanilla Hadoop, GOM-Hadoop determines a
partition to be sent to which reducer by its partition number
(generated by the partition function).

5.4. Reducer side merging

Merging also occurs at the reducer side because a reducer needs
to merge all the partitions it fetched frommappers into one single
stream before feeding them into the reduce() function. Similar
to the mapper side merging, the reducer side merging might occur
in multiple rounds as well.

All key–value pairs in one partition come from one input chunk,
which is a consecutive block of the input dataset. Hence, if one
key–value pair of a partition has a ‘‘smaller’’ secondary key than
that in another partition, all the key–value pairs in the former
partition have ‘‘smaller’’ secondary keys than those in the latter
partition. Similar to the counter in the spill file, we enable each
mapper to use its numeric ID to extend key–value pairs when
creating its output file. However, since we do not control a mapper
to read which chunk, that one mapper has a smaller ID does
not necessarily mean that the key–value pairs it produced have
‘‘smaller’’ secondary keys. To solve this problem, we pick one
key–value pair from each partition that is under merging and
then sort them by their secondary keys. Accordingly, the picked
key–value pairs have an order, and so do the IDs in these pairs.
Consequently, we know which ID denotes a ‘‘smaller’’/‘‘larger’’
secondary key.

6. Performance model

In this section,we build an analyticalmodel for GOM-Hadoop to
better understand its overall capability in executing Re-Org tasks.
We leverage this model to compare the performance of our GOM-
Hadoop with that of vanilla Hadoop so as to demonstrate its
advantage.

6.1. Execution of RE-ORG tasks

Similar to vanilla Hadoop, the execution of a Re-Org task in
GOM-Hadoop consists of the execution of mappers and that of
reducers. We divide the execution of a mapper in GOM-Hadoop
into three stages, as shown in Fig. 4. The operations in each stage
are as follows:
1. Parse: reading the input chunk from HDFS and parsing

key–value pairs from the data chunk.
2. Group-order: collecting key–values pairs in buffer and materi-

alizing these key–value pairs into a local disk as spill files after
grouping and ordering them.

3. Merge: merging multiple spill files into one single mapper
output file.

A reducer starts to fetch data from mappers when at least one
mapper has completed its processing. The data is then merged
and the aggregation operation is applied. We divide the reducer
execution into three stages as well. As presented in Fig. 5, the three
reducer stages are:
Fig. 4. Execution of a mapper.

Fig. 5. Execution of a reducer.

Table 1
Notations used in the model.

Notation Description

D Input dataset size
C Chunk size in HDFS
R Number of reducers
I Ratio of output size to input size for mapper
B Output buffer size for mapper
A io.sort.factor
L Size of each record in input dataset
S Size of each k–v pair in mapper output

1. Fetch: fetching its partitions of the mapper outputs from all
mappers.

2. Merge: merging all key–value pairs with the same key (from
different partitions) into one group.

3. Aggregate: applying the aggregation operation to each group of
key–value pairs so as to produce the final output (to be stored
in HDFS).

6.2. The model

Weanalyze the performance of our GOM-Hadoop framework in
executing a Re-Org task bymodeling the amount of time needed in
each stage of the execution in mapper/reducer. Before presenting
the model, we list in Table 1 the notations used in the modeling.

In the parse stage, a mapper sequentially processes each input
record. The record parsing time is linear to the number of input
records. There are C

L input records in each chunk. Letting T1 be the
time needed to parse one input record, a mapper needs C ·T1

L time
to finish the parse stage. In the group-order stage, our framework
uses hashing to process key–value pairs, and each pair is processed
once. The processing time in this stage is approximately linear to
the number of key–value pairs, as demonstrated in Section 6.4.
Therefore, the group-order stage takes C ·T2

L time, where T2
represents the time needed to order one key–value pair. The
number of rounds needed by amapper tomerge spill files depends
on the merge parameter (i.e. parameter io.sort.factor in
Hadoop configuration), which determines the maximum number
of spill files that can be simultaneously merged. For simplicity, we
assume the number of spill files (⌈ C ·I

B ⌉) is smaller than a number,
i.e., ⌈ C ·I

B ⌉ ≤ A2
−A+1 (in this case there are nomore than 2 rounds

of merging) [21]. Similar to the default setting of Hadoop, we set A
to be 10 in GOM-Hadoop, then A2

− A + 1 = 91. The input chunk
size (C) is usually less than 1 GB, and themapper buffer (B) is often
larger than 100MB. Accordingly, a mapper typically generates less
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than 10 spill files. The times of a record to be merged under this
setting, denoted as function Fn(), can be represented as:

Fn


C · I
B


, A, B, S


= nf · β · I(cd1) +


2 ·

nf

A


· A + (nf %A)


· β · I(cd2)

+


2 ·


(α + 1) +


nf − α − 1

A


· A


+ [(nf − α − 1)%A]


· β · I(cd3), (6.1)

where nf = ⌈
C ·I
B ⌉, α = (nf − 1)%(F − 1), and β =

B
S . Function I(x)

is an identity function,

I(x) =


1, if x is true
0, otherwise.

Condition nf ≤ A is denoted as cd1 in Eq. (6.1); cd2 represents con-
dition A < nf ≤ A2

− A+ 1 and α == 0; cd3 represents condition
A < nf ≤ A2

− A + 1 and α ≠ 0. Letting T3 be the time needed to
merge one record, themerge stage takes Fn(⌈ C ·I

B ⌉, A, B, S) ·T3 time.
Therefore, the overall running time of a mapper can be written as:

Tm =
C
L

· T1 +
C
L

· T2 + Fn


C · I
B


, A, B, S


· T3. (6.2)

We then model the running time of a reducer. During the fetch
stage, a reducer fetches partitions from all mappers. Assuming
fetching one unit of data takes T4 time, a reducer needs D·I·T4

R
time to finish the fetch stage (assuming mapper outputs are
evenly distributed to all reducers). As the partitions frommappers
accumulate on disk, the reducer launches a background thread to
merge them into a single data stream. Similar to the merge stage
in a mapper, the merge stage in a reducer might incur multiple
rounds. There are ⌈

D
C ⌉ partitions from allmappers (as there are ⌈

D
C ⌉

mappers). Therefore, the merge stage takes Fn(⌈D
C ⌉, A, D·I

R , S) · T3
time. Letting T5 be the time of processing one key–value pair using
the aggregation operation andwriting the corresponding output to
HDFS, the aggregate stage takes D·I·T5

R·S time. Therefore, the overall
running time of a reducer can be represented as:

Tr =
D · I
R

· T4 + Fn


D
C


, A,

D · I
R

, S


· T3 +
D · I
R · S

· T5. (6.3)

Let Tov be the constant overhead of initializing and cleaning up
mappers and reducers in the cluster. On a cluster withWm mapper
slots and Wr reducer slots, the running time of a Re-Org task can
be represented as:

Ttotal =


D

C · Wm


· (Tm + Tov) + Tr . (6.4)

Note that Eq. (6.4) assumes the cluster has enough reducer slots to
finish all reducers in one pass, i.e., R < Wr .

6.3. Model verification

We have run a series of experiments to measure the values of
T1 ∼ T5 and Tov when testing a Re-Org task in a 10-node cluster. By
applying those values into Eq. (6.4), we can calculate the running
time of the Re-Org task predicted by our model. The predicted
running time is compared against the actual running time to verify
the accuracy of themodel.We show the comparison result in Fig. 6,
where we vary the input chunk size and the mapper buffer size in
our experiments.
Fig. 6. Comparing the actual running time and the predicted running time.

As shown in Fig. 6, themeasured running time and the predicted
time exhibit very similar trends. The actual time is smaller than the
predicted time because our model does not consider the overlap
between mapper execution and reducer execution for the sake of
simplicity. The overlap depends on many volatile factors, such as
task scheduling and I/O request serving.

6.4. Time complexity comparisons

Now we can exploit the presented model to illustrate the
advantage of our GOM-Hadoop framework. We here compare
the time of running a Re-Org task on GOM-Hadoop with that
of running it on vanilla Hadoop. The execution of a Re-Org task
on Hadoop can be divided into six stages similar to those of
GOM-Hadoop. Our analysis will be based on comparing the
corresponding stages in two frameworks.
Parse and fetch stages: Our framework and vanilla Hadoop have
no difference in the parse stage and the fetch stage. Both need to
parse the same amount of key–value pairs from the input chunk in
the parse stage. In the merge stage (in either mapper or reducer),
our framework is more efficient than vanilla Hadoop. GOM-
Hadoop utilizes the property of the input dataset to maximally
avoid comparing secondary keys.
Merge stage: Assuming T ′

3 is the average time for vanilla Hadoop to
merge one record, wemust have T ′

3 > T3. As a result, GOM-Hadoop
saves Fn(⌈ C ·I

B ⌉, A, B, S) ·(T ′

3−T3) time in themapper’s merge stage,
and saves Fn(⌈D

C ⌉, A, D·I
R , S) · (T ′

3 − T3) time in the reducer’s merge
stage.
Aggregate stage: Vanilla Hadoop has to call a customized grouping
comparator to group key–value pairs. The grouping comparator
needs to deserialize the composite key, which slows down the
aggregate stage. Assuming T ′

5 is the time for vanilla Hadoop to
process one key–value pair using the aggregation operation and
to write the output, GOM-Hadoop saves D·I

R·S · (T ′

5 − T5) time in the
aggregate stage.
Group-order stage: The group-order stage is the key of GOM-
Hadoop and thereforewepresent the analysis of this stage in detail.
Table 2 shows the notations in our analysis. We treat sorting the
key–value pairs to generate spill files as the group-order stage in
vanilla Hadoop.

The time a mapper spent on sorting operations for generating
spill files often dominates its group-order stage. Hence, we focus
on analyzing the time spent on sorting in this stage. To simplify
the analysis, we assume that each hash function generates evenly
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Table 2
Notations in analyzing the time complexity.

Notation Description

n Number of key–value pairs in a mapper’s buffer
r Number of partitions (i.e., number of reducers)
k Number of unique keys in a mapper’s buffer
b Number of slots
u Number of unique keys that have the same hashcode in each slot
t1 Time of one number (hashcode) comparison
t2 Time of one primary key comparison
t3 Time of one secondary key comparison

distributed hash values; key–value pairs have evenly distributed
keys.

When a mapper generates a spill file, GOM-Hadoop compares
items onlywhen sorting keys of key–value pairs in each small hash
table to obtain an order of its entries. We leverage quicksort to sort
keys. We first compare their hashcodes (hc2), which are integer
numbers, and then compare the (primary) keys themselves only
if their hashcodes are the same. There are r · b small hash tables
in total, and each one has n

r·b keys. Sorting hashcodes of keys in
one small hash table takes t1 ·

n
r·b · log n

r·b time. Hence, it spends
t1 · n · log n

r·b time to compare hashcodes. Similarly, GOM-Hadoop
needs t2 · n · log n

r·b·u time on comparing the keys. Let To be the
sorting time when a mapper of GOM-Hadoop generates a spill file.
We have

To = t1 · n · log
n

r · b
+ t2 · n · log

n
r · b · u

. (6.5)

We then analyze the sorting time when a mapper of vanilla
Hadoop generates a spill file. To sort all key–value pairs in a spill
file, Hadoop uses quicksort to sort them in the following way.
It first compares their partition numbers. If the numbers are the
same, their primary keys are compared. If their primary keys
are still the same, it compares their secondary keys. Therefore,
their partition number must be compared. Consequently, the time
spent on comparing partition number is t1 · n · log n. There are
r partitions, and each one has n

r key–value pairs. Primary keys
in two key–value pairs are compared only when they have the
same partition numbers. Hence, comparing primary keys within
the same partition takes t2 ·

n
r · log n

r time. Because there are
r partitions, the total time spent on comparing primary keys is
t2 · n · log n

r . Similarly, the time of comparing secondary keys is
t3 · n · log n

r·k . Therefore, when a mapper generates a spill file, the
time needed by vanilla Hadoop in sorting, Th, is

Th = t1 · n · log n + t2 · n · log
n
r

+ t3 · n · log
n

r · k
. (6.6)

Recalling the analysis in Section 6.2, we know that there are B
S

key–value pairs in a mapper’s buffer (n =
B
S ), a mapper generates

⌈
C ·I
B ⌉ spill files in total, and R = r . Therefore, compared to vanilla

Hadoop, a mapper in our framework saves ⌈
C ·I
B ⌉ · (Th − To) time in

the group-order stage.
In conclusion, as compared to vanilla Hadoop, GOM-Hadoop

needs Tsave less time in executing a Re-Org task. We have

Tsave =


D

C · Wm


·


Fn


C · I
B


, A, B, S


· (T ′

3 − T3)

+


C · I
B


· (Th − To)


+ Fn


D
C


, A,

D · I
R

, S


· (T ′

3 − T3) +
D · I
R · S

· (T ′

5 − T5). (6.7)

From Eq. (6.7) we can see that the time saved by GOM-Hadoop
is approximately linear to the input dataset size (D). Besides,
GOM-Hadoop shows its advantages over vanilla Hadoop more
prominentlywhen the group order and themerge stages dominate
the running time of a job, because T3 and T5 are much smaller than
T ′

3 and T ′

5, respectively. We believe that quite a lot of workloads
have that characteristics. For instance, when the size of key–value
pairs produced by amapper ismuch smaller than the input records
(i.e., I is small), only a small amount of data must be shuffled and
output. In this case, the fetch phase and the aggregate phase take
only a small portion of the entire running time. Also, because the
parse phase is usually quite short, the group-order and the merge
stages are the dominating parts in the job running time.

7. Evaluation

We have conducted extensive experiments to evaluate the per-
formance of GOM-Hadoop. Our experiments show that the pro-
posed framework constantly outperforms start-of-the-art vanilla
Hadoop implementations in executing Re-Org tasks.

7.1. Experiment setup

We use both a local cluster and a large-scale cluster on Amazon
EC2 [3] to evaluate our framework. The local cluster has 10
machines, each of which has 16 3.33 GHz Intel Xeon cores, 16 GB
of RAM, and 1 TB of hard disk. Each machine is configured to have
12 slots for mappers and 4 slots for reducers. The Amazon cluster
consists of 100 medium instances. Each instance has one core,
3.7 GB of RAM, and 400 GB of hard disk. Twomapper slots and one
reducer slot are configured for each instance.

Two real-world datasets are used in our evaluation, denoted as
click stream data and network flow data, respectively. The former
one is the well-known 116 GB click stream data collected at
the World Cup 1998 website [32]. The latter one is network
flow metadata extracted from the traffic of a US national-wide
mobile network. A commercial tool is used to sniff packets from
the mobile network’s backbone and extract semantic metadata
of network flows. The metadata of a flow has multiple lines of
records. A unique numeric ID is included in those lines to associate
them with the same flow. The records of flows are outputted
into text log files as they are generated, and each record has a
timestamp to indicate when the record is generated. The records
of different flows interleave with each other, and they are always
ordered by their timestamps. The size of the network flow data is
1.35 TB.

We run two types of Re-Org tasks with distinct input–output
characteristics on these two datasets. In the first type of task,
the ratio between the input data size and the output data size
is close to 1. In other words, this type of task does not produce
summary of the input data. Rather, it just re-organizes the input
data in a certain way. Examples of this type of task include user
sessionization and flow construction. User sessionization groups
clicks by user and then divides the click stream of each user into
sessions by a timeout threshold (e.g., 5 min). Flow construction
groups all records (metadata) of the same flow together and
ensures the records are sorted on their timestamps. The other type
of Re-Org task has low ratio of its output size to its input size, such
as computing session duration of all sessions and figuring out the
killer page of each session (i.e., last accessed page of a session).
This type of task aggregates a lot of information so as to produce a
summary of the input data.

We compare GOM-Hadoop with vanilla Hadoop’s secondary
sort implementation in realizing the aforementioned two types of
Re-Org tasks. The basicMapReduce approach is not evaluated here
since it is not scalable (as illustrated in Section 3.2).
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Fig. 7. Running times of high output ratio tasks.

(a) Map timings.

(b) Reduce timings.

Fig. 8. Timings for user sessionization.

7.2. RE-ORG tasks with high output ratio

We first test running Re-Org tasks with high output ratio. Fig. 7
shows the end-to-end times of running user sessionization on the
click stream data and running flow construction on the network
flow data. We can see that GOM-Hadoop runs 2.2 and 1.7 times
faster than vanilla Hadoop, respectively.

We also use the user sessionization task as an example to
study the running time of each individual stage in a mapper
and a reducer, to provide a microscopic view of GOM-Hadoop’s
performance benefits. Fig. 8 presents the measurement results.

As shown in Fig. 8(a), GOM-Hadoop is 25× faster than
vanilla Hadoop in the group-order stage. In addition, by setting
parameters (to allow each mapper to generate only one spill
file), neither GOM-Hadoop nor vanilla Hadoop needs mapper side
merging. As shown in Fig. 8(b), GOM-Hadoop is faster than vanilla
Hadoop in all the three stages of the reducer execution. The
performance benefit of the fetch stage is due to two reasons. First,
the fetch stage completes after all mappers finish, and thus the
slow mapper execution of vanilla Hadoop slows down its fetch
stage. Secondly, part of the merge stage is counted into the fetch
stage because they overlap with each other, and GOM-Hadoop has
amore efficientmerging scheme. Themerge stage of GOM-Hadoop
is faster because it leverages a more efficient merging scheme
(relative order based merge). As shown in Section 3.3, vanilla
Hadoophas to use a grouping comparator to groupkey–value pairs,
which needs to deserialize the composite key and thus slows down
its aggregate stage.
(a) Map timings.

(b) Reduce timings.

Fig. 9. Timings for session duration.

Fig. 10. Running times of low output ratio tasks.

7.3. RE-ORG tasks with low output ratio

We then use the click stream data to evaluate two Re-Org tasks
with low output ratio: (1) computing session duration, and
(2) finding killer pages. This type of Re-Org task shuffles and
outputs much less data. Hence, the sorting (of vanilla Hadoop)
would contribute more to the running time of a task. Accordingly,
the benefits of our framework would be more prominent. Fig. 9
plots the running time of each stage in mappers and reducers.
Compared to the user sessionization task (with high output ratio),
the computing session duration task running in vanilla Hadoop
spends a little less time in the group-order phase and spendsmuch
less time in the fetch phase and the aggregate phase. As shown
in Fig. 10, GOM-Hadoop achieves 5× speedup as compared to
vanilla Hadoop on the session duration task and obtains similar
performance on the killer page task.

7.4. Scalability

We further evaluate GOM-Hadoop on the large-scale Amazon
cluster to test its scalability. Both types of Re-Org tasks, the user
sessionization task and the session duration task, are tested on the
click stream data. The performance of vanilla Hadoop is evaluated
as a reference point.

Fig. 11 presents the job running time as the number of nodes
(instances) being used increases from 20 to 100. We can see
that the running times of both tasks decrease smoothly as the
number of nodes increases. GOM-Hadoop constantly outperforms
vanilla Hadoop regardless of the cluster size. When the cluster
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(a) User sessionization.

(b) Session duration.

Fig. 11. Varying number of nodes. Running times are on a log scale.

(a) User sessionization.

(b) Session duration.

Fig. 12. Varying size of the input dataset.

size is 100-node, GOM-Hadoop achieves 4.7× speedup on the user
sessionization task and 6.3× speedup on the session duration task.
More importantly, comparing with that on the local cluster, GOM-
Hadoop on the Amazon cluster demonstrates even better speedup.
This is because that the Amazon instances are less powerful (with
slower CPUs) than the local machines and thus the deficiency of
the CPU-intensive sorting in vanilla Hadoop is more serious.

We also test how GOM-Hadoop scales with increasing size of
the input data. We choose data subsets of different sizes from the
click streamdata andperformboth the user sessionization task and
the session duration task. As presented in Fig. 12, when realized by
GOM-Hadoop, the running time of both tasks increases linearly as
the size of the input data increases. Moreover, running both tasks
on GOM-Hadoop is always faster than that on vanilla Hadoop. We
can conclude that GOM-Hadoop has good scaling performance in
processing large scale datasets.

8. Related work

MapReduce [12] has attracted lots of attention over the past
several years as a practical large-scale data processing framework.
A series of studies have extended the basic idea of MapReduce
and/or optimized its performance for various applications. Using
hash techniques to improve the performance of MapReduce has
been explored in [21,33]. However, running Re-Org workload di-
rectly on those frameworks incurs significant inevitable overhead,
since neither of them utilizes the ordering property of the input
datasets. The most relevant work to ours is the one-pass analyt-
ics platform proposed by Li et al. in [21]. They exploit multi-level
hashing to group data by keys. Their platform does not preserve
the original relative order of records in each group. Hence, imple-
menting a Re-Org task on their platform requires the user to write
customized code to sort records on their secondary keys, as in the
basic MapReduce approach, and thus it is not a scalable solution.
Map-Reduce-Merge [33] adopts hash techniques to implement ef-
ficient joining. Each reducer maintains a hash table so as to merge
partitions from mappers. However, it does not preserve the origi-
nal relative order of records in the merged group either.

Efficiently processing event log files has been studied in
[23,10], which have different focuses with this paper. In-situ
MapReduce [23] aims to process data on location without upload-
ing it to a centralized place. TiMR [10] builds a time-oriented data
processing system on top of MapReduce so as to support queries
in behavioral targeting advertisement. In contrast, our work fo-
cuses on how to efficiently support relative order-preserving based
grouping tasks by utilizing the ordering property of the input
datasets.

9. Conclusion

We observed that a large class of analytical workload in big
data analytics can be considered as relative order-preserving
based grouping (Re-Org) tasks on ordered datasets. Additionally,
we identified that the popular big data analytics tool, MapRe-
duce/Hadoop, cannot efficiently realize such tasks because of its
internal sort–merge mechanism. Therefore, this paper presents
a scalable distributed framework, GOM-Hadoop, for efficiently
executing Re-Org tasks. GOM-Hadoop adopts a novel group-
order–merge mechanism to efficiently exploit the ordering prop-
erty of the datasets. GOM-Hadoop is built by extending Hadoop
to incorporate the proposed mechanism as an alternative shuffle
mechanism. The performance of GOM-Hadoop was evaluated via
both formal modeling and extensive experiments on real-world
datasets. The experimental results show that GOM-Hadoop can be
up to 6.3× faster than Hadoop in executing Re-Org tasks.
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