
Efficient Analytics on Ordered Datasets using MapReduce

Jiangtao Yin
UMass Amherst

jyin@ecs.umass.edu

Yong Liao
Narus Inc.

yliao@narus.com
Mario Baldi

Narus Inc.
mbaldi@narus.com

Lixin Gao
UMass Amherst

lgao@ecs.umass.edu

Antonio Nucci
Narus Inc.

anucci@narus.com

ABSTRACT
Efficiently analyzing data on a large scale can be vital for
data owners to gain useful business intelligence. One of the
most common datasets used to gain business intelligence is
event log files. Oftentimes, records in event log files that are
time sorted, need to be grouped by user ID or transaction ID
in order to mine user behaviors, such as click through rate,
while preserving the time order. This kind of analytical
workload is here referred to as RElative Order-pReserving
based Grouping (Re-Org). Using MapReduce/Hadoop, a
popular big data analysis tool, in an as-is manner for ex-
ecuting Re-Org tasks on ordered datasets is not efficient
due to its internal sort-merge mechanism. We propose a
framework that adopts an efficient group-order-merge mech-
anism to provide faster execution of Re-Org tasks and im-
plement it by extending Hadoop. Experimental results show
a 2.2x speedup over executing Re-Org tasks in plain vanilla
Hadoop.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed systems

General Terms
Design, Performance, Experimentation

Keywords
MapReduce/Hadoop; distributed framework; ordered dataset

1. PROBLEM STATEMENT
Large corporations produce and collect terabytes of data

on a daily basis with the purpose of analyzing them to
continually improve their services and operations. Several
classes of data used to gain business intelligence have a tem-
poral dimension, such as webpage click streams, network
traffic traces, and business transaction records. Further-
more, a lot of analytic tasks over such temporal data re-
quire to group data points based on a certain feature and
temporally sort them within the group. Many important
analytic jobs, including user online activity sessionization,
TCP/IP flow construction, and customer statement genera-
tion, treat such tasks as a vital part of their execution. The
corresponding input datasets can be generally seen as event

Copyright is held by the author/owner(s).
HPDC’13, June 17–21, 2013, New York, NY, USA.
ACM 978-1-4503-1910-2/13/06.

log files, in which each record is about an event occurring
at a given point in time. Such datasets have the important
property that since the records are placed in the dataset as
they are generated, they are temporally ordered.

More generally, this kind of dataset can be represented as
a list of records consisting of a primary key, a secondary key,
and a value, sorted by the secondary keys. Several popular
and business critical analytics tasks use such a dataset as
an input to generate a set of output data points, each one
being a function of a group of records from the input dataset
that satisfy the following conditions: (1) records are grouped
based on their primary keys; (2) records in a group are sorted
by their secondary keys. We define the RElative Order-
pReserving based Grouping, or Re-Org, as the processing
that creates groups satisfying the above requirements.

Efficiently executing Re-Org over large quantity of data
in a distributed environment is challenging. MapReduce [3]
and its extensions [4, 6–8] have emerged as scalable frame-
works for data intensive computation using a large cluster
of commodity machines. However, realizing Re-Org tasks
using MapReduce in an as-is manner is not efficient. MapRe-
duce distributes input records to mapper nodes (workers) in
the cluster and then groups them by their primary keys on
the reducer nodes utilizing an internal sort-merge scheme,
which cannot take advantage of the fact that the input records
are already sorted by secondary key. Sorting records by sec-
ondary key in the same group (i.e., having the same primary
key) requires to either write custom code or instrument the
MapReduce framework (e.g., Hadooop) to do that. Either
way, the sorting operation is time consuming.

2. OUR SOLUTION
This work proposes a novel group-order-merge (GOM)

mechanism to replace the sort-merge shuffle scheme of MapRe-
duce, so as to efficiently support the execution of Re-Org
in a distributed environment. The property of the input
dataset being sorted by secondary key is used to speed up the
execution of Re-Org. Figure 1 shows how the three phases
of the GOM mechanism are distributed between mapper and
reducer workers.
Group Phase: A worker (mapper) sequentially extracts
the records from its input chunk and groups them by apply-
ing a hash function on their primary keys. The output of
the group phase is a set of segments, each containing a set
of lists. Each list includes all the records in the processed
chunk with the same primary key. Since records are pro-
cessed sequentially, each list preserves the ordering records
have in the input dataset.

input dataset

group

chunk 0

group group

aggregate

merge merge

aggregate

segments

output

order order order

chunk 1 chunk 2

Figure 1: Group-order-merge phases.

Order Phase: Lists in each segment are sorted based on
their primary keys. This is an important preparation step
to then allow reducer nodes to efficiently merge segments
produced by different mapper workers. Note that each list
is treated as a whole in the order phase, which is much more
efficient than handling each record individually. The sorted
segments are then distributed to a set of reducer workers
based on the primary key (i.e., one segment to one worker
and guaranteeing all lists whose records have the same pri-
mary key will be received by the same reducer worker).
Merge Phase: The records contained in segments for the
same primary key received from different mappers are merged
into one final list. The merging algorithm must ensure that
records in the resulting list of each segment preserve their
relative ordering as in the input dataset. The fact that lists
in the segments received from different mappers are sorted
by primary key allows the merging algorithm to have min-
imum complexity by creating the secondary-key-sorted list
corresponding to each primary key value in a single pass.

After the merge phase, data is ready to allow each reducer
to perform the aggregation operation on the final secondary-
key-sorted list1.

3. IMPLEMENTATION AND EVALUATION
The group-order-merge (GOM) mechanism was implemented

as an alternative shuffle scheme in Hadoop [1] to the default
sort-merge one. Hadoop was selected as the basis for the im-
plementation because a Re-Org task maps very well to the
MapReduce programming model and Hadoop is the most
popular open-source framework supporting such program-
ming model. The popularity of Hadoop stems from its good
performance in handling failures and capability of scaling to
a large number of worker nodes. The prototype implemen-
tation that provided the results shown below is based on
Hadoop version 1.0.3.

A user online activity sessionization task was run on the
well known 116GB click stream dataset related to World
Cup 1998 [2] using a 10-node cluster. This sessionization
task first groups clicks by user and then divides the click
stream of each user into browsing sessions based on a time-
out threshold (e.g., 5 minutes). The performance of the ses-

1The aggregation operation is not part of the proposed
mechanism, but constitutes the implementation of the ac-
tual analytics task.

 0
 10
 20
 30
 40
 50
 60

Vanilla Hadoop GOM HadoopR
u
n
n
in

g
 t
im

e
 (

m
in

)

Figure 2: Running time of user sessionization.

sionization task on GOM-enhanced Hadoop was compared
to the one of vanilla Hadoop using the stock secondary sort
implementation [5]. As it can be seen in Figure 2, the GOM-
enhanced Hadoop prototype achieves a 2.2x speedup on the
completion time over vanilla Hadoop.

 0
 10
 20
 30
 40
 50
 60

 20 40 60 80 100R
u
n
n
in

g
 t
im

e
 (

m
in

)

Size of input data (GB)

Vanilla Hadoop
GOM Hadoop

Figure 3: Running times of user sessionization on
data with varying size.

Figure 3 shows how the performance of the sessionization
task on a 10-node GOM-enhanced Hadoop cluster scales
with increasing size of the input dataset compared to the
vanilla Hadoop cluster. The 116GB click stream dataset
was divided in subsets of different sizes on which the user
online activity sessionization task was run. As shown in Fig-
ure 3, the running times on the GOM-enhanced framework
increase linearly with the size of the input dataset outper-
forming vanilla Hadoop with any input data size.

Acknowledgments
This work is partially supported by NSF grant CNS-1217284.

4. REFERENCES
[1] Apache Hadoop. http://hadoop.apache.org/.

[2] World Cup 1998. http:
//ita.ee.lbl.gov/html/contrib/WorldCup.html.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In OSDI ’04, 2004.

[4] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H.
Bae, J. Qiu, and G. Fox. Twister: a runtime for
iterative MapReduce. In HPDC ’10, 2010.

[5] T. White. Hadoop: The Definitive Guide. O’Reilly
Media, Inc., 1st edition, 2009.

[6] J. Yin, Y. Zhang, and L. Gao. Accelerating
expectation-maximization algorithms with frequent
updates. In CLUSTER ’12, 2012.

[7] Y. Zhang, Q. Gao, L. Gao, and C. Wang. iMapReduce:
A distributed computing framework for iterative
computation. In IPDPSW ’11, 2011.

[8] Y. Zhang, Q. Gao, L. Gao, and C. Wang. PrIter: A
distributed framework for prioritized iterative
computations. In SOCC ’11, 2011.

