
Cooperative Robust Forwarding Scheme in DTNs
using Erasure Coding

Yong Liao†, Zhensheng Zhang‡, Bo Ryu‡, Lixin Gao†

†Dep. of Electrical & Computer Eng. ‡San Diego Research Center

University of Massachusetts Suite A, 6696 Mesa Ridge Rd

Amherst, MA 01003, USA San Diego, CA 92121, USA

email: {yliao, lgao}@ecs.umass.edu email: {z.zhang, bo.ryu}@sdrcinc.net

Abstract—In Delay/Disruption Tolerant Networks (DTNs), net-
work connectivity is highly dynamic due to node movements.
Several fundamental assumptions of the conventional wireless
networks no longer hold in DTNs, which in turn requires new
architectures and protocols design. Routing in DTNs is a challeng-
ing problem as the mobility pattern and the available resources
of each node, such as buffer space, link speed, remaining battery
power, etc, could be dramatically different. In this paper, we
propose a COoperative Robust forwarding scheme using Erasure
coding (CORE) for DTNs. We first introduce a generalized
expression for evaluating the capability of a node to deliver
a message to its destination. The message forwarding decision
is made based on the capability of the encountering nodes to
relay the messages. Furthermore, instead of simply duplicat-
ing/forwarding the entire message, we adopt erasure coding to
generate message redundancy. With a fixed overhead, we can
generate a large number of message blocks using erasure coding
and forward those message blocks to more relay nodes. Therefore,
our proposed message delivery scheme takes advantage of both
the cooperation and the diversity of the relay nodes. Extensive
simulations show that our proposed scheme, CORE, outperforms
several existing protocols.

I. INTRODUCTION

Delay/Disruption Tolerant Networks (DTNs) [1] are usually

intermittently connected mobile wireless networks, such as

inter-planetary networks [1,2] and wildlife tracking/monitoring

sensor networks [3,4]. In DTNs, the connectivity between

nodes changes frequently due to the movement of nodes.

Nodes in DTNs could move randomly or move according to

certain mobility patterns. Generally, the message forwarding in

DTNs works in an extended store-and-forward way. When two

nodes meet with each other and a wireless link is established

between them, messages can be sent over this link. When

a node is not in contact with any other nodes, it stores the

messages and waits for a chance to meet with other nodes and

sends the messages to them. In this manner, the messages are

transmitted from one node to another. Hopefully, the messages

can be forwarded to their destinations eventually by some

“relay” nodes carrying the message. Even though the basic

idea of message forwarding is simple, making the right routing

decision in DTNs is a challenging task, since the network

connectivity is time variable and it is usually hard to be

1-4244-1513-06/07/$25.00 c©2007 IEEE

predicted. Besides, in reality, not only a node has limited

chances to meet with other nodes, but also each node has

only limited resources, such as buffer space for caching the

relayed messages, remaining battery power for node operation,

and outgoing bandwidth for data transmitting.

In order to create more chances to meet with other nodes,

some existing routing schemes dispatch multiple identical

copies of a message to different relay nodes [5,6]. We classify

them as simple replicate schemes in this paper. But dispatching

too many identical copies of one message consumes more

resources of nodes in the network. Recently, another class of

routing scheme based on erasure coding has been proposed

[7,8]. The idea of erasure coding is to encode one message

with k blocks into K blocks (K > k). The original message
can be recovered from any k of the K blocks. Erasure coding
based routing scheme benefits from the diversity of relay

nodes. With the same overhead, an erasure coding based

scheme makes more relay nodes involved in message for-

warding than the simple replicate scheme does. Erasure coding

based schemes are especially suitable for those DTNs where

relay node failures are prevalent, delays are unpredictable, and

minimizing the worse-case delay is important [7].

Most of the previous work assumes nodes in the network are

identical and independent. This assumption, although simple,

may not be realistic. Measurement studies [9,10] have demon-

strated that nodes in DTNs may be significantly different in

terms of mobility patterns. Besides the difference in mobility

pattern, the available resources of different nodes can be quite

diverse in DTNs with heterogeneous nodes. Here the resources

which affect the delivery of messages can be available buffer

space, remaining battery power, link bandwidth, etc. In making

the next hop forwarding decision, most of the previous work

considers only the probability of contacting with the destina-

tion node, which is obtained based on history information of

node mobility pattern. But considering only the node contact

frequency can lead to bad forwarding decisions. For example,

if the available buffer space on a relay node is almost zero or

the remaining power of that node is very low, even if that relay

node has high probability to contact with the destination node,

it may not be a good relay for new messages, since messages

forwarded to it will be dropped latter.

With the above intuition in mind, we generalize the erasure

coding based routing scheme proposed in [8] and propose a

COoperative Robust forwarding scheme using Erasure coding

(CORE) for DTNs in this paper. In CORE, a message is first

encoded into large number of small blocks and then those

blocks are distributed to suitable relay nodes. CORE uses both

node contact frequency information and information of node

available resources to evaluate the “capability” of a relay node

to successfully deliver the message. The information of node

available resources includes buffer space, link speed, remain-

ing energy level, node willingness to relay, etc. We propose to

use a linear function to combine those factors into one single

scale so that the capability of different nodes can be compared.

How messages blocks are distributed among different nodes is

determined by the capability of encountering nodes. Extensive

simulations have been conducted to study the performance

of our scheme. The simulation results demonstrate that the

cooperative forwarding scheme with erasure coding (CORE)

outperforms several existing schemes in terms of message

delivery rate and achieves up to 50% reduction in message
delivery time for the scenario considered in this paper.

The rest of this paper is organized as follows. We present

a brief overview of related works on DTN routing in Section

II. In Section III, we describe the CORE scheme in detail.

The simulation results are presented in Section IV. Section V

concludes this paper.

II. RELATED WORK

Recently, there has been much research activity in the area

of DTN routing [11]. Two deterministic routing schemes are

proposed in [12,13]. Those schemes assume that the future

(or at least for certain period of time) network connectivity

dynamics can be predicted and use deterministic algorithms

to compute the best path for forwarding messages between

nodes.

Besides the deterministic schemes, the epidemic routing is

proposed in [5], which works like flooding the messages to

all nodes in the network. In the direct transmission scheme

proposed in [14], the source node holds the data message

until it meets with the destination node. Other routing schemes

try to tradeoff between the epidemic routing and the direct

transmission scheme in terms of delivery rate/delay and over-

head. In [15] the authors propose to let a node duplicate a

message and forward it to a contact only if the contact has

a higher delivery probability for the message. Similarly, Tan

et al. use expected path length as the metric in evaluating the

capability of a contact to deliver the message in [16]. In [17],

the authors propose to forward messages to relay nodes with

similar mobility pattern as the destination node. In order to

exactly bound the overhead of delivering a message, the spray-

and-wait scheme is proposed in [6], in which a fixed number

of copies of one message is first sprayed to relay nodes into

the network, then the relay nodes wait for the chance to meet

with the destinations so that the message can be delivered.

Recently, Wang et al. propose a scheme in [7] which extends

the spray-and-wait scheme by using erasure coding. Erasure

coding [18] transforms a message into a set of small blocks

so that the original message can be recovered from a subset

of those blocks. By applying erasure coding, the protocol

can potentially have more relay nodes involved in forwarding

messages and benefits from the diversity of relay nodes. In

an extreme case, the average delay tends to converge to a

constant. In [8], the authors propose an erasure coding based

scheme which exploits the periodic movement patterns of

nodes to estimate the chance of a relay node to deliver a

message to its destination.

III. CORE: COOPERATIVE ROBUST FORWARDING

SCHEME USING ERASURE CODING

A. Overview of erasure coding

Erasure coding [18] is a coding technique which transforms

a message of k blocks into K (K > k) blocks so that the
original message can be recovered from a subset of those K
blocks. The ratio of k overK is called the coding rate, denoted
by r. Under an optimal erasure coding, k/r blocks should be
generated for a message with k blocks, where any k blocks
are sufficient to recover the original message. Optimal coding

is expensive in terms of memory and CPU usage when k is
large. Therefore near optimal erasure coding is often used,

which requires (1 + ε)k blocks to recover the message. For
simplicity, we ignore the ε in this paper and assume k blocks
are enough to recovery the original message.

Using erasure coding in a DTN benefits the message for-

warding because we can potentially generate a large number

of small blocks for one message and introduce more diversity

by letting more relay nodes carry the blocks of that message

[7,8]. In contrast, with the same message redundancy, the

simple replicate scheme can have only a few identical message

copies. If some of the relay nodes carrying an entire message

copy fail or those message copies are dropped because of

buffer overflow, the successful delivery of that message can be

greatly impacted. If we use erasure coding to encode message

into small blocks and let a relatively large number of relay

nodes carry those blocks, even if some of the message blocks

are dropped/delayed by relay nodes, the destination node may

still be able to receive enough message blocks to recover the

original message.

B. The capability of a relay node to deliver a message

Using erasure coding alone may not always deliver the

message quicker than simple replicate based schemes [8,18].

To deliver the message to its destination faster, we need to

select the right relay nodes to carry the message blocks,

which means we need to estimate the “capability” of a relay

node to deliver the message. In estimating whether a relay

node is a good candidate for delivering a message to its

destination, the most common way is measuring how many

times the relay node has encountered with the destination node

of the message, since message transmission can occur only

when two nodes meet with each other. If a relay node met

with the destination node many times before, we can expect

it has more chance to successfully deliver the messages in

the future. Therefore, most of existing works use the contact

frequency between the relay node and the destination node

as the metric to estimate the capability of the relay node to

deliver a message.

However, considering only the historical direct contacting

information can be misleading in some scenarios, since a

message can be relayed for multiple hops before reaching its

destination. The situation can be worse if we consider some

realistic issues such as limited battery power, limited buffer

space, limited communication bandwidth, etc. For instance, if

node A moves faster than other nodes in the network, node A
has more chance to meet with other nodes. Therefore, node

A may have already used up most of its buffer space or node
A may have already consumed most of its battery power. So
choosing node A as the relay node could be a bad decision,
because forwarding some additional messages to A would
cause A to drop some of the old messages in its buffer, or
A might run out of power before delivering the messages
in its buffer. In order to make the right decision in message

forwarding, other factors should be considered also.

Here we present a simple method to compute the capability

of a relay node to deliver a message. Generally, we assume that

there are a set of parameters which affect the decision of how

to forward message blocks to relay nodes. Those parameters

can be denoted as a vector V = [v1, v2, ..., vn]. We assume the
capability of a relay node to successfully deliver a message is

a monotonic increasing function of vi, i ∈ [1, n]. For various
network scenarios, the impact of each component in V can be
different. Considering the different impact of those parameters,

we assign a weight αi to each component vi in V and define
the capability of a relay node as the linear combination of all

the components in vector V .
More specifically, assume that two nodes n1 and n2 meet

with each other and their capability to deliver a message m
to its destination node is denoted by V 1 and V 2, respectively.

Note that the scales of different components in vector V can
be quite different. Therefore, it is necessary to first normalize

those parameters and then linearly combine these normalized

components into one scale. Normalization of the components

in V 1 and V 2 is given in (1)

v
′

i,1 =
vi,1

vi,1+vi,2
v

′

i,2 =
vi,2

vi,1+vi,2
(1)

where vi,1 is the ith component in V 1 and vi,2 is the ith
component in V 2. The capability of n1 or n2 to successfully

deliver message m is then given by

Cj,m =
n∑

i=1

αiv
′

i,j j ∈ {1, 2} (2)

where
n∑

i=1

αi = 1

Cj,m is used as the indicator for the capability of relay

node nj to deliver the blocks of message m. When two nodes
meet with each other, they should exchange message blocks

according to their capability parameters. For easy description,

we list in TABLE I the notations used in the rest of this paper.

TABLE I
NOTATIONS

Symbol Description

m The message in concern.
k Each message has k blocks.

Each message is encoded into K blocks and the
K original message can be recovered by any k of

those K blocks.
Each message block is labelled with a time stamp on

TTLmax when it is generated. Message blocks older than
TTLmax are dropped during cache replacement.
Message blocks older than TTLrep and less likely to

TTLrep be delivered than the newly incoming message blocks
are dropped during cache replacement.

ttlm The “age” of blocks generated from message m.
Fi,j The frequency of node i to contact with node j.

Dst(m) The destination of message m.
Ci,m The capability of node i to deliver message m.
Mi,m The number of blocks of message m in node i.
Bufi Node i’s buffer size.

Free(Bufi) The available free space of node i’s relay buffer.

C. Basic operation of CORE

When a message is generated, it is first encoded into K
small message blocks by the source node using erasure coding,

so that the original message can be recovered from any k out
of those K blocks. Each message block is labelled with a

time stamp about when it is generated. The source node holds

all the message blocks until it meets with another relay node

and forwards some blocks to the relay node. When two nodes

meet with each other, they first exchange information about

the message blocks in their buffer and all other necessary

information for computing each other’s capability to deliver

each message. After the information exchanging phase, the

two encountering nodes compute their capability to deliver

each message in their buffer and make the message forwarding

decisions. When the buffer is full, a node first drops those

message blocks who were generated more than TTLmax

seconds ago. If the resulting buffer space is still not enough

for the newly incoming message blocks, the node will drop

message blocks who are older than TTLrep seconds and are

less likely to be delivered than the newly incoming message

blocks. In Section III-D and Section III-E, we will discuss

the cache replacement strategy and the message forwarding

scheme in detail.

D. The cache replacement strategy

For each node, we assume it has only limited buffer space

which can be used for relaying messages generated by others.

When two nodes meet with each other and exchange message

blocks, those nodes may have to adopt a cache replacement

strategy to free some buffer space. Here the cache replacement

strategy decides which message blocks to be dropped if there

is not enough free buffer space to store the newly arriving

message blocks.

Algorithm 1 The cache replacement algorithm

Precondition: Node B needs to receive a blocks of messagem from
node A, but B’s buffer can store only n (n < a) more blocks.
Node B will do cache replacement.

1: for each message m
′

∈ BufB do
2: if n ≥ a then
3: break;
4: end if
5: if ttl

m
′ ≥ TTLmax then

6: drop min(a-n, MB,m) blocks of m
′

;
7: n = n+min(a-n, MB,m);
8: end if
9: end for
10: while n < a do
11: find message m

′

∈ BufB with the smallest contact frequency

with the destination of message m
′

;
12: if FB,Dst(m) > F

B,Dst(m
′
) and ttl

m
′ ≥ TTLrep then

13: drop min(a-n, MB,m) blocks of m
′

;
14: n = n+min(a-n, MB,m);
15: else
16: break;
17: end if
18: end while
19: Inform A to forward n blocks of message m;
20: return n;

Selecting which message blocks to drop is a challenge here.

Intuitively, those messages which were generated long time

ago should be dropped first, because those messages may

already be delivered to their destinations by other relay nodes

or those message may be out-of-date. Second, the messages

which are not likely to be delivered to their destinations

should be dropped, because carrying those messages may

sacrifice the delivery of messages with higher chance to be

delivered. Therefore, we adopt a two-stage scheme to do cache

replacement.

Suppose nodes A and B meet with each other and node A
is going to forward a blocks of message m to node B after
they compare their capability to deliver message m. Node
B does not have enough buffer space so B will do cache
replacement. First, node B drops those message blocks who
are older than TTLmax seconds. The TTLmax parameter

can be set according to the application requirements. If the

free buffer space is still not enough, node B will drop some
message blocks which are less likely to be delivered than the

blocks node A is going to forward. In order to prevent B from
dropping those message blocks which were generated recently,

we set another parameter TTLrep. For the blocks of message

m in node B, B will drop the blocks of message m only

when ttlm ≥ TTLrep and node B’s frequency of meeting
with the destination of m is smaller than its frequency of

meeting with the destination of message blocks from A. After
node B finishes dropping messages, it informs node A of its
free buffer space size and A starts to transfer message blocks
to B. The pseudo-code for the two-stage cache replacement
algorithm is shown in Algorithm 1.

E. Message forwarding scheme

When two nodes meet with each other, they first exchange a

summary of the message blocks in their buffer. For the blocks

of each message, the summary includes the destination node

ID, the relay node ID, the message life time, the message

sequence number, number of message blocks, and the contact

frequency with the message’s destination node. Besides of

those parameters, the two nodes should also exchange in-

formation such as each other’s free buffer space, available

battery power, etc. Based on the exchanged information, the

two encountering nodes can compute each other’s capability

in delivering the message to its destination node, using (1) and

(2). If the available buffer space on one node is not enough

to store the message blocks which will be transferred to it

by the other node, the cache replacement strategy described

in Section III-D will be used to decide whether to drop

some message blocks or deny the transferring of new message

blocks. The pseudo-code in Algorithm 2 shows how message

blocks are forwarded between two encountering nodes.

Algorithm 2 The message block forwarding process

Precondition: Node A encounters B and node A transfers message
blocks to B.

1: for each message m in BufA do
2: if Dst(m) is B and B is in connection then
3: B receives min(k, MA,m) blocks of msg m from A;
4: end if
5: if Dst(m) 6= B and B is in connection then

6: trans = MA,m ×
CB,m

CA,m+CB,m
;

7: if trans > Free(BufB) then
8: call the procedure in Algorithm 1;
9: set trans to the return value of Algorithm 1;
10: end if
11: B receives trans blocks of m from A;
12: end if
13: end for

IV. SIMULATION EVALUATIONS

In order to evaluate the performance of the CORE scheme,

we have implemented an event driven simulator using C++

language and have conducted extensive simulation experi-

ments. In our simulations, we compare the performance of four

different erasure coding based schemes, the source forwarding

scheme (SRCF), in which only the source node delivers

message blocks to relay nodes and relay nodes deliver message

blocks to the destination node directly; the binary spray&wait

scheme (BINSW), which is similar to the scheme proposed

in [6] except here small message blocks are sprayed into the

network instead of the entire messages; the estimation based

erasure coding forwarding scheme (EECF) [8], which uses

only the contact frequency as the parameter to estimate the

capability of a relay node; and the cooperative robust for-

warding scheme (CORE). The randomness in our simulations

comes from the nodes movement only. That is, for different

simulation instances, no matter what routing schemes are used,

the nodes movement is exactly the same if the same random

seed is used to run the simulations. In order to fairly compare

those four schemes, we use the same set of random seeds to

run the simulations of the four different schemes.

A. The mobility model

In our simulations, we use a restrict random waypoint

mobility model, which is similar to the model used in [8,16].

Different from the conventional random waypoint model, each

node in the restrict random waypoint model has a given set of

waypoints. After the node arrives at a waypoint, it will stay

at that point for a random “thinking time”. Then the node

randomly chooses one destination from its waypoint set and

moves towards that point. Therefore, instead of having uniform

visiting probability over the whole network, each node has a

higher chance to visit some areas and may seldom move to

some areas in the network. By carefully setting the distribution

of each node’s waypoints, we can simulate different types

of movements. We believe this restrict random waypoint

mobility model captures some important characteristics of

realistic mobile networks, as the recent measurement in pocket

switched networks [9] shows that nodes always have het-

erogeneous mobility patterns. Some nodes visit certain areas

more frequently than other nodes; or a group of nodes with

common interest may meet with each other more frequently.

Similarly, the PeopleNet [10] also observes that people with

similar interests form “bazaars”, where they have more chance

to meet with each other.

The network used in our simulations consists of 100 nodes
moving in a 10000 × 10000 unit2 square area. Each node
has 20 waypoints. Among those waypoints, the first one is
randomly chosen in the network. Then 14 waypoints are ran-
domly chosen from a 1000×1000 unit2 square area centered
at the first waypoint. The rest 5 waypoints are randomly chosen
in the entire 10000 × 10000 unit2 square area. Among all
those 100 mobile nodes, three fourth of them move at the
speed of Vmax = 50 unit/step and the others move at the
speed of Vmin = 5 unit/step. In the initial state, nodes are
randomly located in the entire square area. The thinking time

at each waypoint is uniformly selected in [0, 20] simulation
steps. The communication range of a node is set to 60 units.
At the beginning of each simulation instance, we have all the

nodes moving in the network for 2000 simulation steps, so
that nodes can build and stabilize their contacting frequency

tables 1. After that initial phase, we run the simulation for

5000 steps.

B. The node model

We assume each node, say node A, in the network has
two kinds of buffer spaces. One is for storing relay messages.

We call this buffer as “relay buffer”. Message blocks in node

A’s relay buffer are neither generated by A nor destinated
to A. The other buffer is used to store message blocks

1Although the contacting frequency table is useless for SRCF and BINSW
schemes, there is still an initial table building phase in the simulations of
SRCF and BINSW schemes because we want to ensure the nodes movements
are exactly the same for these four schemes.

generated by A or destinated to A. This buffer is called “self
buffer”. We assume each node has infinite self buffer but

only limited relay buffer. In order to be fair in comparing the

performance of different schemes, nodes in all four different

routing schemes use the process described in Section III-D to

do cache replacement when they do not have enough relay

buffer space. The default relay buffer space on each node is

set to be 50M bits. Each node generates 100 messages after
the initial table building phase and the destinations of those

message are randomly selected from all the mobile nodes in

the network. Each message is 0.5M bits long and it is encoded

into 25 message blocks using erasure coding. The size of each
message block is 0.5/5 = 0.1M bits. With any 5 message
blocks among those 25 blocks, the original message can be
recovered.

In the simulation for the CORE scheme, we consider two

parameters in evaluating the capability of a relay node to

forward a message m. One parameter (represented by v1,i)

is the node i’s contact frequency with destination node of that
message. The other parameter (represented by v2,i) is the free

buffer space in relay node i. To compute the capability of each
node to deliver message m when two nodes A and B meet
with each other, the following linear function is used

Ci = αv
′

1,i + (1 − α)v
′

2,i (3)

where v
′

1,i is node i’s normalized contact frequency with the

destination of message m, v
′

2,i is node i’s normalized free
buffer space, α is the weight assigned to the contact frequency
parameter, and (1−α) is the weight assigned to the free buffer
space parameter. In the following experiments, the default

value of α is set to 0.7 if we do not explicitly specify it.

C. The message delivery delay

In this experiment, we compare the message delivery delay

of the SRCF, BINSW, EECF, and CORE schemes. For each

scheme, we use ten different random seeds to run the simula-

tion and plot the CDF (Cumulative Distribution Function) of

the message delivery delay. The simulation results are shown

in Fig. 1. From the figure, we can see that our CORE scheme

outperforms the other three forwarding schemes. With proba-

bility 0.9, CORE can deliver messages within 1600 simulation
steps. The BINSW scheme delivers message faster than the

SRCF scheme because it sprays the message blocks quickly

into different relay nodes. The EECF scheme is better than

BINSW because the message blocks are forwarded to those

relay nodes who are more likely to meet with the destination

node. Our CORE scheme makes even better decision than the

EECF scheme in forwarding the message blocks, because the

CORE scheme not only considers whether the relay nodes

have higher chances to meet the destination node, but also

considers whether the relay nodes can keep the message blocks

long enough instead of dropping those message blocks before

forwarding them to other nodes.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
D

F
 o

f
S

u
c
c
e
s
s
fu

l
D

e
liv

e
ry

 D
e
la

y

Delivery Delay (step)

SRCF
BINSW

EECF
CORE

Fig. 1. The CDFs of four different message forwarding schemes

D. Impact of buffer size on the performance

Since messages may be carried by relay nodes for consid-

erably long time, the buffer size of each node can greatly

impact the message delivery. In this experiment, we range the

relay buffer size on each node from 20 Mbits to 200 Mbits
and run the simulations for the four forwarding schemes. The

average message delivery delay result is plotted in Fig. 2(a).

From Fig. 2(a) we can observe that in general the average

message delivery delay in four different schemes decreases

as the node relay buffer size becomes larger. But the average

message delivery delay of the CORE scheme is always smaller

than the other three schemes, no matter what the node relay

buffer size is. Besides, compared with the other three schemes,

our CORE scheme can achieve shorter message delivery delay

especially when the buffer size is small.

We also count the number of successfully delivered mes-

sages in the simulations of the four different schemes. The

result is shown in Fig. 2(b). From this plot we can see that our

CORE scheme always delivers more messages than the other

three schemes within 5000 simulation steps. In some cases,
the EECF scheme can deliver less messages than the BINSW

scheme. The reason might be that in the EECF scheme, those

nodes with higher chance to meet with other nodes can always

receive large number of message blocks, which makes them

frequently drop message blocks.

From the figures plotted in Fig. 2 we can see that our

CORE is better than the other three schemes especially when

the node buffer size is small. When the mobile nodes have

large enough relay buffer spaces (larger than 150 Mbits), the
CORE scheme retrogresses to the EECF scheme since there

are always available buffer space and it does not make any

difference whether to consider the buffer space in making

forwarding decisions or not.

E. Impact of the capability weights on the performance

The weight assigned to each component which determines

the capability of relay nodes is important for the CORE

scheme to achieve good performance in terms of message

delivery delay and the message delivery rate. It is difficult

to analytically prove a set of weights is better than an other

set of weights, since the selection of the weights should be

determined by a number of factors such as nodes mobility, the

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 20 40 60 80 100 120 140 160 180 200

A
v
e
ra

g
e
 D

e
liv

e
ry

 D
e
la

y
 (

s
te

p
s
)

Node Relay Buffer Size (MBit)

SRCF
BINSW

EECF
CORE

(a) Average message delivery delay

 60000

 65000

 70000

 75000

 80000

 85000

 90000

 95000

 100000

 105000

 20 40 60 80 100 120 140 160 180 200N
u
m

b
e
r

o
f
S

u
c
c
e
s
s
fu

lly
 d

e
liv

e
re

d
 m

e
s
s
a
g
e
s

Node Relay Buffer Size (MBit)

SRCF
BINSW

EECF
CORE

(b) Number of successfully delivered messages

Fig. 2. Comparison of the average message delivery delay and the number of
successfully delivered messages of four different message forwarding schemes
when the node buffer space is set to different sizes.

new message generating model, etc. Here we use an empirical

approach to study how the weight assigned for each factor

can affect the performance of our CORE scheme. As we use

equation (3) to compute the node capability in our simulations,

we range the value of α from 0 to 1 and run the simulations
of our CORE scheme. Here, when α is close to 0, only the
node buffer size information is considered and the node contact

frequency information is not used, while when α is close to
1, the node buffer size information is not used and only the

node contact frequency information is used.

The results are plotted in Fig. 3, in which we present both

the result of the average message delivery delay and the result

of the total number of successfully delivered messages. It is

easy to notice from Fig. 3 that when α is too small (close
to 0) or too large (close to 1), the CORE scheme suffers

longer delivery delay and delivers less messages. This verifies

our intuition that considering one parameter alone in making

forwarding decision does not yield good performance.

It can also be noticed that the average delivery time is more

sensitive to the weights assigned to different factors, while the

number of successfully delivered messages is less sensitive to

the weights. One reason for this phenomenon is that most

messages in DTNs will eventually be delivered if nodes have

large enough buffer space. Therefore, most of the messages

can be delivered to their destinations even we assign “bad”

weights (if the buffer size is large enough and we do not limit

the delivery time). From the average delay curve plotted in

Fig. 3(a) we can see that the optimal value of α is about 0.6,

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
e
ra

g
e
 D

e
liv

e
ry

 D
e
la

y
 (

s
te

p
s
)

Alpha

Average delay of CORE scheme

(a) Average message delivery delay

 95500

 96000

 96500

 97000

 97500

 98000

 98500

 99000

 99500

 100000

 100500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
o
ta

l
N

u
m

b
e
r

o
f
S

u
c
c
e
s
s
fu

lly
 D

e
liv

e
re

d
 M

e
s
s
a
g
e
s

Alpha

Number of successfully delivered messages

(b) Number of successfully delivered messages

Fig. 3. The average message delivery delay and number of successfully
delivered messages in CORE scheme when the weights assigned to each
factors determining node’s capability are different. The α parameter here is
the weight assigned to the contact frequency factor; (1 − α) is the weight
assigned to the node free relay buffer factor.

which seems to achieve the best balance between the contact

frequency factor and the available relay buffer size factor.

V. CONCLUSION

In this paper, we have presented CORE, a COoperative

Robust forwarding scheme with Erasure coding for DTNs.

CORE adopts erasure coding to encode messages into small

blocks and makes the intelligent and robust decision in for-

warding those message blocks. When making the message

block forwarding decision, CORE takes into consideration a

number of factors which determine the capability of a relay

node to deliver the message, such as contact frequency with

the destination node of that message, the node’s available

buffer size, the remaining power level, etc. Simulation results

demonstrate that even considering only two factors, the contact

frequency and the available buffer space, CORE outperforms

three existing DTN routing schemes. By jointly considering

a set of factors in evaluating the capability of a relay node,

CORE can deliver message faster and can achieve higher mes-

sage delivery rate. Our study indicates that in order to deliver

more messages and deliver messages faster, it is essential to

differentiate relay nodes when forwarding message blocks by

considering the capability of those relay nodes. In the future,

we will study the impact of the remaining energy level of

relay nodes on the system performance, as energy efficiency

becomes more and more important in protocol design.

REFERENCES

[1] K. Fall, “A delay-tolerant network architecture for challenged Internets,”
in SIGCOMM ’03: Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communications.
New York, NY, USA: ACM Press, 2003, pp. 27–34.

[2] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf, B. Durst,
keith Scott, and H. Weiss, “Delay-tolerant networking: An approach to
interplanetary Internet,” IEEE Communications Magazine, June 2003.

[3] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein,
“Energy-efficient computing for wildlife tracking: design tradeoffs and
early experiences with zebranet,” SIGOPS Oper. Syst. Rev., vol. 36, no. 5,
pp. 96–107, 2002.

[4] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,
“Wireless sensor networks for habitat monitoring,” in WSNA ’02:
Proceedings of the 1st ACM international workshop on Wireless sensor

networks and applications. New York, NY, USA: ACM Press, 2002,
pp. 88–97.

[5] D. B. Amin Vahdat, “Epidemic routing for partially connected ad hoc
networks,” Duke University, Technical Report CS-200006, Apr. 2000.

[6] T. Spyropoulos, K. Psounis, and C. Raghavendra, “Spray and wait: an
efficient routing scheme for intermittently connected mobile networks,”
in WDTN ’05: Proceeding of the 2005 ACM SIGCOMM workshop on
Delay-tolerant networking. New York, NY, USA: ACM Press, 2005,
pp. 252–259.

[7] Y. Wang, S. Jain, M. Martonosi, and K. Fall, “Erasure-coding based
routing for opportunistic networks,” in WDTN ’05: Proceeding of the
2005 ACM SIGCOMM workshop on Delay-tolerant networking. New
York, NY, USA: ACM Press, 2005, pp. 229–236.

[8] Y. Liao, K. Tan, Z. Zhang, and L. Gao, “Estimation based erasure-
coding routing in delay tolerant networks,” in IWCMC’ 06: International
Wireless Communications and Mobile Computing Conference, Delay

Tolerant Mobile Networks Symposium, Vancouver, Canada, July 2006.
[9] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, and C. Diot,
“Pocket switched networks and human mobility in conference envi-
ronments,” in WDTN ’05: Proceeding of the 2005 ACM SIGCOMM
workshop on Delay-tolerant networking. New York, NY, USA: ACM
Press, 2005, pp. 244–251.

[10] M. Motani, V. Srinivasan, and P. S. Nuggehalli, “Peoplenet: engineering
a wireless virtual social network,” in MobiCom’05. New York, NY,
USA: ACM Press, 2005, pp. 243–257.

[11] Z. Zhang, “Routing in intermittently connected mobile ad hoc networks
and delay tolerant networks: Overview and challenges,” 2006, IEEE
Communication Survey and Tutorial.

[12] S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant network,” in
Proceeding of SIGCOMM’04, Aug. 2004.

[13] S. Merugu, M. Ammar, and E. Zegura, “Routing in space and time in
networks with predictable mobility,” Georgia Institute of Technology,
Technical Report GIT-CC-04-7, 2004.

[14] T. Spyropoulos, K. Psounis, and C. Raghavendra, “Single-copy routing
in intermittently connected mobile networks,” in Secon ’ 05: The First
IEEE Communications Society Conference on Sensor and Ad Hoc

Communications and Networks, Oct. 2004.
[15] A. Lindgren, A. Doria, and O. Schelen, “Probabilistic routing in inter-

mittently connected networks,” SIGMOBILE Mob. Comput. Commun.
Rev., vol. 7, no. 3, pp. 19–20, 2003.

[16] K. Tan, Q. Zhang, and W. Zhu, “Shortest path routing in partially
connected ad hoc networks,” in Globecom, 2003.

[17] J. Leguay, T. Friedman, and V. Conan, “DTN routing in a mobility
pattern space,” in WDTN ’05: Proceeding of the 2005 ACM SIGCOMM
workshop on Delay-tolerant networking. New York, NY, USA: ACM
Press, 2005, pp. 276–283.

[18] H. Weatherspoon and J. Kubiatowicz, “Erasure coding vs. replication:
A quantitative comparison,” in IPTPS ’01: Revised Papers from the
First International Workshop on Peer-to-Peer Systems. London, UK:
Springer-Verlag, 2002, pp. 328–338.

