Per-user Policy Enforcement on Mobile Apps through
Network Functions Virtualization

Amedeo Sapio
Politecnico di Torino

Yong Liao

Narus, Inc.

Mario Baldi

Narus, Inc.

Torino, Italy Sunnyvale, CA Politecnico di Torino
Gyan Ranjan Fulvio Risso Alok Tongaonkar
Narus, Inc. Politecnico di Torino Narus, Inc.
Sunnyvale, CA Torino, ltaly Sunnyvale, CA
ABSTRACT Keywords

Due to the increasing popularity of smartphones and tablets, mo-
bile apps are becoming the preferred portals for users to access
various network services in both residential and enterprise envi-
ronments. Predominantly using generic HTTP or HTTPS proto-
cols, traffic from different mobile apps is largely indistinguishable.
This loss of visibility into mobile app traffic brings new challenges
to network management and traffic analysis. It has became very
hard to implement network policies based on the differentiation be-
tween traffic from compliant and non-compliant mobile apps. This
paper presents a system that not only provides network adminis-
trators the much desired capability of enforcing policies on mobile
app traffic, but also does that at a fine per-user granularity. The
proposed system takes a Network Functions Virtualization (NFV)
approach and virtualizes an edge router into multiple virtual data
planes. Specifically, each data plane serves solely to one particu-
lar user and consists of user-specific virtualized network functions.
The independence of the virtual data planes facilitates enforcing
network policies at the per-user level. To enable policy enforce-
ment on mobile apps, our system includes a sophisticated mobile
app identification module to recognize traffic from different apps
using preloaded traffic signatures. By exploiting TLS proxying,
our system can even enforce policies on those mobile apps adopt-
ing traffic encryption. We have implemented a prototype of the
proposed system as a wireless access point (AP) using a commod-
ity small form factor PC. Our preliminary experimental evaluations
show that the system can scale to modest number of users without
much impacting user experience in using the network.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—Secu-

rity and protection; C.2.1 [Computer-Communication Networks]:

Network Architecture and Design—~Network communications

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

MobiArch’14, September 11, 2014, Maui, Hawaii, USA.

Copyright 2014 ACM 978-1-4503-3074-9/14/09 ...$15.00.
http://dx.doi.org/10.1145/2645892.2645896.

Network Functions Virtualization; Mobile Security; Policy Enforce-
ment; Traffic Filtering

1. INTRODUCTION

State-of-the-art firewall and network monitoring systems rely largely

on P address, domain-name, and port number based policy formu-
lation and enforcement [6]. Such approaches are becoming unten-
able as user-owned devices (mostly smartphones and tablets) are
increasingly accepted within enterprise networks (a.k.a. the bring-
your-own-device (BYOD) to work phenomenon). Such devices ex-
ecute a multitude of mobile applications (roughly 1.75 million at
the last count of Android and iOS markets), a significant portion
of which use HTTP and HTTPS to interact with servers connected
on Internet. To make matters worse, such servers are often times
hosted by cloud providers or content delivery networks. Thus, con-
ventional protocol and port number based traffic analysis tools can
neither differentiate traffic from distinct mobile apps, nor separate
mobile apps traffic from generic web-traffic [4, 14]. The advent
of Web 2.0, which facilitates rapid development of web-based and
distributed applications, has only accentuated the problem as many
enterprise and consumer web applications use the same protocols.

While some mobile applications may actually be necessary or
useful in corporate or residential context, others may compromise
information security of a network [13]. Besides the issue of dif-
ferent applications, the same application developed for different
platforms (e.g. Android vs. i0S) may have different security vul-
nerabilities. Finally, as mobile applications increasingly become
multi-faceted and complex, the risks of them being used for data
exfiltration have escalated [9, 7]. For example, popular services
such as Facebook now functions as authentication gateways and
substrates for a large eco-system of applications (e.g. FarmVille).
This can provide indirect access to sensitive information to unde-
sired, and potentially malicious, third parties.

Additionally, roles and privileges within a network might need to
be different on a per-user basis. For instance, in an enterprise while
certain employees might need to access and/or share sensitive in-
formation with prospective clients for business objectives, others
should not be permitted to do so. Similarly, in a residential net-
work environment, parents may want to restrict their kids’ access
to applications that are not child-safe.

Addressing these challenges calls for a new breed of policy for-
mulation and enforcement systems based on a completely new de-
sign. To guarantee network and information security, it is impera-

tive that such systems have the capability to identify and differen-
tiate traffic generated by different mobile applications, across plat-
forms and devices, and impose policies based on users and their
roles.

In this paper we propose the MAPPER (Mobile Application Per-
sonal Policy Enforcement Router) system, which can implement
per-user fine-grained policies on users’ mobile app usage by moni-
toring network traffic. The presented MAPPER implementation is a
wireless network access point that, upon authenticating a connect-
ing user, loads a set of modules to process network traffic to/from
the user’s device, and implements user-specific access policies based
on the user applications that generated the traffic. The design of
MAPPER is inspired by research in the field of Nerwork Functions
Virtualization (NFV). More specifically, MAPPER allocates each
user a dedicated virtual execution environment to run network func-
tions specialized to the user. The identification of mobile apps gen-
erating traffic flows is provided by a sophisticated engine integrated
into MAPPER as a virtualized network function. This engine pro-
cesses HTTP flows and identifies rich information on the origins of
those flows, such as the mobile apps that generated those flows and
the platforms (Android, iOS, or Blackberry) of those apps. To max-
imize the visibility into network traffic, MAPPER can additionally
instantiate a virtualized network function running a TLS-capable
man-in-the-middle proxy, which transparently terminates HTTPS
connections so as to retrieve plain-text data from encrypted flows.

NFV plays an essential role in the design of MAPPER. By Isolat-
ing network functions operating on the traffic of each user basis, it
greatly eases the enforcement of per-user policies and separation of
traffic from different users, which is key from both privacy and per-
formance perspectives. Network functions, as well as the policies
they implement, can migrate seamlessly across different MAPPER
access nodes, in order to follow the user and enforce the policy no
matter which network access node she is connected (e.g., indepen-
dently of the department or branch of her company she is visiting),
providing a uniform security protection.

The design and development of MAPPER offers a number of
technical contributions presented in this paper. To the best of our
knowledge, MAPPER is the first system capable of enforcing rich
policies on mobile app traffic on a per-user basis. The NFV ap-
proach taken in MAPPER provides extreme flexibility in architect-
ing the system and facilitates some unique features of the system.
We have implemented a prototype of MAPPER to demonstrate its
feasibility. Our tests show that the ambitious goal of enforcing poli-
cies on a vast number of mobile apps at the fine per-user granularity,
even for apps encrypting their traffic, can be achieved with off-the-
shelf commodity hardware.

The rest of this paper is organized as follows. Section 2 surveys
the related works on remote policy enforcement, mobile app iden-
tification, and network functions virtualization. Section 3 presents
the design of MAPPER.Performance evaluation results are presented
in Section 4. Section 5 concludes this paper and discusses future
steps to improve the system.

2. RELATED WORK

The state-of-the-art remote policy enforcement schemes exploit
dedicated middleboxes that inspect network traffic with certain de-
gree of application level awareness (e.g. firewall) [6]. Approaches
based on Virtual Private Networks (VPN) leveraging Trusted Plat-
form Module (TPM) chips are proposed in literature as well [12].
These solutions are no longer suitable for networks serving mostly
mobile devices. First, those mobile devices use a new communica-
tion paradigm, mobile apps, that works mainly on HTTP/HTTPS
protocol, and the state-of-the-art approaches do not have the deep

and fine-grained visibility into HTTP/HTTPS traffic. Secondly, it
is often hard for enterprise network administrators to get control
of the devices directly due to the lack of some software/hardware
features in those devices, and the devices are usually not owned by
enterprises (due to the BYOD trend).

The capability of deeply analyzing network traffic to identify
which mobile apps have generated the traffic is studied in a series
of recent works [15, 4, 14]. The richness of app identifier infor-
mation embedded in advertisement traffic of mobile apps is studied
in [14]. Dynamically executing mobile apps in sandbox environ-
ment so as to generate state machine based mobile app traffic sig-
natures is studied in [4]. The FLOWR system presented in [15]
starts from a small set of seeding knowledge to automatically learn
more mobile app signatures by observing large volume of network
traffic. MAPPER integrates those research results into its mobile
app identification engine.

The basic architecture of MAPPER is inspired by the idea of Net-
work Function Virtualization, which has long been an active re-
search field. The virtualization on commodity network hardware
has been proven to be a powerful and practical proposition by many
works, such as Flowstream [5], RouteFlow [10], and NetVM [8].
We chose to base our work on the FROG system [11, 2], because
it offers a powerful and extensible architecture to separate the traf-
fic on per-user basis by assigning each user a dedicated lightweight
virtual machine. This capability was not provided and analyzed by
the other above mentioned works.

3. SYSTEM ARCHITECTURE

3.1 Overview

Leveraging the FROG system, MAPPER allocates isolated vir-
tual environments to execute network functions. A network func-
tion executed in a MAPPER virtual environment is referred to as a
net-app. Each user connected to a MAPPER device is assigned with
a dedicated virtual environment to execute net-apps specific to the
user. Such a per-user virtual environment is referred to as Personal
Execution Environment (PEX). A PEX is like an edge router, with
the capability to run arbitrary net-apps, designated to process traffic
of only one user. MAPPER also has a second type of virtual envi-
ronment for executing net-apps that are not specific to any given
user. Such a virtual environment is referred to as a Global Execu-
tion Environment (GEX). A GEX can run services that (i) are not
required to be executed in a per-user fashion and (i7) may be needed
by multiple users. In that case, a GEX provides a certain service
that is exposed via a pre-defined API. A net-app running in a user’s
PEX can access the service by calling its API.

The capability to distinguish traffic from different mobile apps is
provided by the Mobile Application Identification (MAI) net-app
running in a GEX. MAI runs a sophisticated engine to process
HTTP flows and identify mobile apps that generated them. Visi-
bility into encrypted traffic, such as HTTPS flows, is provided by a
TLS-capable man-in-the-middle proxy (MiMP) net-app running in
another GEX, which transparently terminates HTTPS connections
so as to retrieve plain-text HTTP sessions from encrypted flows.

Separating virtual execution environments into PEXes and GEXes
manifests MAPPER’s balance between flexibility and performance
of the system. Providing each user a dedicated PEX enables adopt-
ing user specific net-apps, enables security and privacy stemming
from traffic separation and provides support for a user to program
and customize her own net-apps. On the other hand, the GEX en-
ables MAPPER to avoid the overhead of running several instances
of the same net-app in multiple PEXes.

3.2 Virtualization Layer

The virtualization layer that supports the creation of PEXes and
GEXes in MAPPER is built on top of the FROG (Flexible and pRO-
Grammable) edge router platform [11, 2]. The high level architec-
ture of FROG is depicted in Figure 1. A PEX is a FROG execution
environment that receives/sends data from the underlying network
hypervisor through an high speed communication channel based on
shared memory, while GEXes are reached through standard TCP/IP
sockets. A GEX is an isolated container that shares the TCP/IP
stack with other GEXes and the rest of the host (including the hy-
pervisor) and uses standard TCP/IP primitives to communicate with
the other components. The hypervisor forwards incoming packets
to proper PEXes for user specific processing. In the FROG imple-
mentation deployed in this work the source and destination MAC
addresses of a packet are used by the hypervisor to determine which
PEX the packet should be forwarded to. Packets are processed by
net-apps running in PEXes and then they, or their content as ex-
tracted by the net-apps, are processed by GEXes, if there are any.
After that, the hypervisor relays the processed packets out of MAP-
PER.

— Virtualization |
nétapp '
GEX 3
@ | | GEX'1 [net-app] | { net-app) :
) % 1
ix! ; :
i@ PEX 1 PEX n |
2 ! netappl [GEX 4
H . t- H
:' I Iw,: [net-applt—{ net-app] |:
— - |
FlT 1['—: """"" Lf """""""
2 4 1
l hypervisor |

NIC 1 NIC 2

Figure 1: Virtualization layer of MAPPER.

3.3 Network Applications (Net-apps)

We have developed a broad range of net-apps for MAPPER. Some
of them are quite generic and can be adopted in a variety of scenar-
ios. Examples of such generic net-apps include a network monitor
and a DNS filter, which collects traffic statistics and filters out mali-
cious DNS queries, respectively. In this paper we focus on net-apps
related to the enforcement of policies on mobile apps.
Man-in-the-middle Proxy (MiMP) Net-app: To provide the vis-
ibility into encrypted traffic from mobile apps, MAPPER uses a
GEX to run a TLS-capable proxy service. For this purpose we used
mitmproxy [3], which is a powerful and customizable transpar-
ent HTTPS proxy. mitmproxy relies on a TCP/IP stack to pro-
vide TCP end-point functionalities, which are in turn required to
support the TLS sessions terminated by the proxy. Rather than in-
cluding a TCP/IP protocol stack implementation in the GEX, the
proposed design leverages an additional virtual network interface
tap0 bound to the OS TCP/IP stack. The mitmproxy running
in a GEX uses its services through the common socket interface
provided by the OS. Leveraging its full visibility into user’s traffic,
the MiMP net-app also extracts relevant information from traffic
required by other modules of the system, such as the Mobile App
Filter net-app presented later.

MiMP Bridge Net-app: A user’s PEX runs a MiMP Bridge net-
app to interact with the MiMP net-app running in a GEX. Once
loaded into a user’s PEX, the MiMP Bridge net-app forwards all the
(encrypted) user’s traffic toward the MiMP net-app, which returns
a selected portion of the plain-text form of the encrypted traffic to
another net-app. In the enforcement of per-user policies based on
mobile apps, the returned plain-text form data is consumed by the
Mobile App Filter net-app to enforce mobile app usage policies.
It is worth highlighting that encrypted traffic is analyzed only for
users that have the MiMP Bridge in their policy.

Mobile App Identification (MAI) Net-app: This MAPPER net-
app runs in a GEX and identifies the mobile app generating network
flows to enable the definition and enforcement of policies at mobile
app granularity. The MAI net-app comes preloaded with a rule
set [4, 14] that extracts distinguishing mobile application features
from individual flows. These per-flow features are then matched
with a rich signature table to identify the app responsible for the
flow. In addition, the MAI net-app also assigns device (e.g. iPhone,
iPod, Samsung Galaxy) and platform (e.g. iOS and Android) labels
to classified flows. Last but not least, MAI uses category trees to
map each mobile app into a set of carefully pre-selected categories,
such as social, gaming, etc. Therefore, network monitoring and
management policies can be formed taking into account not only
individual apps, but also broad app categories, platforms and device
types; or any combination thereof.

Mobile App Filter Net-app: The service provided by the MAI
net-app is consumed by the Mobile App Filter net-app running in
a user’s PEX to enable the enforcement of her specific policies on
mobile app usage. For each HTTP/HTTPS bi-directional flow, the
Mobile App Filter receives an extract of the flow from the MiMP
and contains information needed by MAI to identify the appID of
the originating mobile app. The XML formatted extract is passed
from MiMP to Mobile App Filter and then to MAI through REST
APIs, also used to return the appID from MAI to Mobile App Filter.
The policy enforced for a user can be blacklisting a set of mobile
apps, or even the entire categories of mobile apps (e.g. social, gam-
ing, etc). Once Mobile App Filter determines that the originating
app as identified by an applID is in the blacklist, the response to the
REST API previously called to the Mobile App Filter indicates to
the MiMP the corresponding flows should be blocked.

3.4 Policy Enforcement Example

We present an example of policy enforcement to show the net-
apps involved and the flow of information among them. Every time
a new user is connected to a MAPPER wireless AP, the user is re-
quired to authenticate via a captive portal web UL Upon a success-
ful authentication, a dedicated PEX is instantiated by MAPPER and
the predefined policy, in the form of net-apps, is loaded into the
PEX. Figure 2 shows an example of the net-apps deployed and the
flow of information among them, where MAPPER enforces a pol-
icy to require visibility into both HTTP and HTTPS traffic, and to
blacklist a set of mobile apps.

Each packet from the user device is classified by the hypervisor
and forwarded to that user’s PEX to be processed by a chain of net-
app. First, the MiMP bridge net-app hijacks all HTTP and HTTPS
traffic towards the MiMP GEX. The hijacking is done by chang-
ing the destination IP address to the one bound to virtual interface
tapO0, on which the MiMP is listening for incoming connections.
The packets with modified destination IP address are then sent back
to the hypervisor that forwards them to the tap0 interface of the
MAPPER machine, where they are received by the MiMP. For each
packet flow, the MiMP bridge net-app also informs the MiMP about
the original 5-tuple (i.e. {sIP, sPort, dIP, dPort, proto}).

MABRER

i ! Virtualization

. *-E=======c=o=c o

: GEX 1 H

i User wack ¥ 1

' Xract — - i

| PEX - XML eX== L MAI ;

! || Mobile App [app \D :

! Filter < H

! T~ L GEX 2 ! _I

I T~ . |

: MiMP Mot =t || |~

| Bridge T~ MiMP Y Server
: & : j erver
| L lerereeeerens —L.l— Hypervisor |

| NIC 1 I
Client

Figure 2: Information flow among net-apps.

The 5-tuple information is consumed by the MiMP to build a map
Mg p, which maps {sI P, sPort,dPort, proto} to dI P. MiMP
uses map M p to recover the original destination IP of an incom-
ing connection, which is needed to create an outgoing TCP con-
nection to the proper server and forward to it the HTTP/HTTPS
session.

If an incoming connection is HTTP, the MiMP acts as a conven-
tional HTTP proxy, which opens a new connection with the original
web server and fetches the content. For a HTTPS incoming con-
nection, the MiMP terminates the secure TLS tunnel and joins it
with a new one to the external web server. The MiMP is able to ter-
minate the secure tunnel because during the TLS negotiation phase
it returns to the client application a self signed certificate of the
web server, rather than the original one. The client host must have
the MiMP certificate installed as a trusted Certification Authority,
which might be performed in the initial authentication phase, or the
user is required to accept the MiMP signed server certificate.

As shown on the right hand side of Figure 2, the HTTP request to
the original web server is sent through the OS TCP/IP stack with-
out hitting the hypervisor of the MAPPER. The first HTTP message
sent by mobile apps is allowed to reach the web, even if the mo-
bile app should be blocked. We deliberately allow this because the
server response could contain information useful for identifying the
app. We believe that in general this does not represent a security
threat since the first HTTP request/response is usually designed for
the app to probe the server and render the app user interface.

Once the MiMP receives the response from the web server, it ex-
tracts relevant data from the request and the response, encodes it in
XML form, and sends it to the Mobile App Filter net-app, which
then queries the MAI using the XML extract. The MAI returns
information related to the mobile app that generated the traffic, in-
cluding the unique app ID, category of the app, and OS of the app.
The Mobile App Filter matches this data against the blacklist in the
user policy to check if the app is permissible or not. The match
result is sent back to the MiMP, which will act according to the
result, by sending back to the client either the response or an HTTP
error message.

The HTTP response is held by the MiMP while it waits for feed-
back from the Mobile App Filter. Performance can be improved
and latency reduced at the expenses of a small reduction in app
identification probability by having the MiMP producing the XML
extract from HTTP requests only. Hence, while the proxy contacts
the server and awaits for a response, the MAI net-app can work
with the XML extract distilled from the HTTP request to provide
the Mobile App Filter with the information on the mobile app. The
Mobile App Filter matches it against the policy and communicates

the outcome to the MiMP so that the latter is possibly ready to for-
ward the HTTP response as soon as it is received.

Note that the visibility into HTTPS traffic is optional and can be
disabled by user policy. Without the requirement to inspect HTTPS
traffic, the MiMP bridge net-app forwards to the MiMP net-app
only HTTP traffic, while HTTPS one is left unchanged.

4. EVALUATION

4.1 Implementation and Experiment Setup

We have implemented a prototype of MAPPER using a small
form factor machine — an Intel Next Unit of Computing box, with
an Intel Core i3-3217U CPU, 8G RAM, running Ubuntu Linux.
The per-user PEXes are FROG virtual machines realized as stan-
dard Java Virtual Machines (JVM). The MAI runs inside a FROG
VM as a GEX net-app. At present, the MAI net-app is capable
of identifying more than 250 K mobile apps spanning the iOS and
Android platforms. The MiMP GEX runs an open source python
implementation available at [3]. To ease the prototyping, we did
not port MiMP into Java. Instead, we did some small changes to
the python code to enable the interaction between MiMP and other
net-apps.

We setup a small testbed as our experiment environment to eval-
uate the performance of MAPPER. In the testbed a MAPPER system
works as a wireless AP serving smartphone and laptop devices. To
easily automate some experiments, the laptop runs curl, a cus-
tomizable command line web client, to emulate various mobile

apps.
4.2 Single-user Tests

We start with testing the performance of MAPPER in serving only
one user. To provide the baseline for fair comparison, we test three
different settings of the access point machine. We configure the ma-
chine as (1) a standalone software AP running hostapd [1], (2) a
standard FROG box running one per-user VM, and (3) a MAPPER
system running the MAI GEX, the MiMP module, and one per-
user PEX. We refer to those three configurations as AP, FROG, and
MAPPER, respectively. For the MAPPER setting, the user policy is
set to allow all traffic from user’s mobile apps.

To isolate our experiments from other interferences, we connect
a web server and the access point machine to the same wired LAN.
Then we run the command line web client to emulate the activity
of a mobile app X by sending 500 HTTP requests to fetch 500
different files from the web server. While the tests are running, we
measure a number of metrics at both the laptop client and the access
point machine.

We first evaluate the network throughput metric of the system
by downloading 500 files from the web server, where each one is
of size 1M B. Figure 3 shows the average throughput measure-
ments at the laptop’s wireless interface. We can see that the cur-
rent MAPPER implementation indeed has lower network through-
put as compared to AP and FROG settings, i.e., the throughput is
20% lower. The main reason is that our current implementation
requires the Mobile App Filter net-app and the MiMP GEX to in-
teract synchronously, which results in considerable blocking and
waiting among them. We are working extensively on removing this
bottleneck from the system.

We also record the CPU and memory usage at the access point
machine, and report the results in Table 1. The results show that
RAM is a more critical resource than CPU in our current prototype
implementation, since MAPPER consumes much more RAM than
the other two settings. A closer look into each module of MAPPER
shows that the MAI GEX alone consumes almost 1.8G' of memory,

throughput (MByte/s)
© = W A W

AP FROG

MAPPER

Figure 3: Network throughput test results.

because the app identification engine uses several big hash table
data structures.

| | CPU peak | CPU ave | RAM peak | RAM ave |

AP 3.4% 1.82% 490 MB 487 MB
FROG 61.3% 17.88% 1241 MB 1190 MB
MAPPER 62.6% 36.5% 4080 MB | 3698 MB

Table 1: CPU and RAM usage comparison.

We next evaluate how much additional delay added by MAPPER
to user’s traffic. We measure the time interval between the web
client sending out a request and receiving the reply from the web
server, and refer to that interval as the response time. For each set-
ting of the access point machine, we measure the response time
of 500 requests, where each one fetches a 1K B file from the web
server, and plot their cumulative distribution in Figure 4. As ex-
pected, users do experience longer response time due to the addi-
tional processing of user traffic by our current implementation of
MAPPER. The response time is less than 500ms in more than 80%
of the cases. The average additional delay is around 300ms.

1.0
08 | :
0.6
04 i
02 |
0.0

CDF

0 100 200 300 400 500 600
Response time (ms)

Figure 4: CDF of the response time for three settings of the access point
machine.

To evaluate how the additional overhead introduced by MAP-
PER affects user experience, we have recruited several volunteers
to connect their smartphones with MAPPER and use their mobile
apps for a few minutes. According to the feedback, most users do
not have any noticeable user experience degradation in surfing the
web, checking online social network updates, etc.

4.3 Multi-user Tests

After having a good understanding of MAPPER’s performance
in single user scenario, we proceed to evaluate the scenario where
multiple users connect to the MAPPER device. To that end, we sim-
ulate the presence of multiple clients by allocating various number
of user PEXes in MAPPER and measuring the memory usage of the
MAPPER machine. We focus on memory usage because it is the

dominating factor that constrains MAPPER from scaling to large
number of users. The results are reported in Figure 5.

8 : : :
m 7 MAI |
O ¢ | MIMP s]
o 5 | PEXes wm— |
on
s 4
3
= 2
S
~

0

0 10 20 30 40 50
Number of PEXes

Figure 5: RAM consumption with growing number of users.

The benefit of having GEXes in MAPPER is obvious as shown
in Figure 5. Because we don’t replicate MAI and MiMP into each
user’s PEX (although MiMP consumes very little memory, around
30M B), the memory footprint of each user PEX can be limited to
around 50M B when the PEX is not processing any packets. Even
after scaling the number of PEXes to 50, the MAPPER machine uses
only half of its memory (4G out of 8G). We believe that most WiFi
network deployments do not plan to have one AP serving more than
50 users.

In order to test how the MAPPER behaves in a more realistic sce-
nario, we also emulate mobile devices using a public Internet web
service on encrypted HTTPS channel. We connect two laptops to
MAPPER to emulate that two different users (each one has a dedi-
cated PEX) are using mobile app X to search at https://www.
google.com. To maximally stress the system, both users’ poli-
cies are configured to be allowing app X and hijacking that app’s
encrypted traffic. We simultaneously set both laptops to emulate
app X sending out 500 search queries. When the test is running,
we measure the CPU and memory usage at the MAPPER machine,
as well as the network throughput and response time at both lap-
tops. To provide a fair comparison baseline, we also repeat the
same experiment using only one laptop to emulate one single user.

| [CPU | RAM | throughput | response time |
1 user 16.13% | 3261 MB 104 Kb/s 778.8 ms
2users || 21.57% | 3392 MB 102 Kb/s 751.6 ms

Table 2: Averaged performance measurements when users are using mo-
bile app X to perform a web search at https://www.google.com.
Throughput in the 2-user test is the one measured at one client device.

Table 2 presents the test results. We can see that when serving
two users instead of one, MAPPER consumes slightly more CPU
and RAM resources, without noticeable degradation in throughout
and response time. Because the web server is on Internet instead of
connected to the same LAN, the response time in Table 2 is larger
than that shown in Figure 4. The larger response time and lower
network throughput result in slower traffic rate. Therefore, the CPU
and RAM usage are lower than those presented in section 4.2.

5. CONCLUSION AND FUTURE WORK

This paper presents the MAPPER system that seamlessly inte-
grates multiple techniques to facilitate enforcing policies on in-
creasingly flourishing mobile apps running on portable devices. We
described the design of MAPPER system in detail and evaluated its
performance using a small scale testbed network. We showed that
network function virtualization provides MAPPER the flexibility to

https://www.google.com
https://www.google.com
https://www.google.com

implement fine-grained policies with acceptable performance over-
head. MAPPER is a work-in-progress system and our future studies
will be directed towards performance improvement on various as-
pects of the system. First step in this is to improve the performance
of MiMP. Currently the MiMP GEX represents a severe bottleneck.
We strongly consider that a Java multithreading implementation of
MiMP can scale up the overall performance. Besides, we plan to
use shared buffers for faster inter-module communications and de-
ploy a web-cache as a net-app to improve performance.

6. ADDITIONAL AUTHORS

Additional authors: Ruben Torres (Narus, Inc.) and Antonio
Nucci (Narus, Inc.).

7. REFERENCES

[1] hostapd and wpa_supplicant. http://hostap.
epitest.fi/.

[2] 1. Cerrato, M. Pramotton, and F. Risso. Moving applications
from the host to the network: Experiences, challenges, and
findings. In IEEE Workshop on Mobile Cloud Networking
(MCN), 2013.

[3] A. Cortesi. mitmproxy - a man-in-the-middle proxy.
http://mitmproxy.org/.

[4] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song.
NetworkProfiler: Towards Automatic Fingerprinting of
Android Apps. In Proceedings of IEEE INFOCOM, 2013.

[5] N. Egi and et al. A platform for high performance and
flexible virtual routers on commodity hardware. ACM
SIGCOMM Computer Communication Review, 2010.

[6] A.D. Keromytis and J. L. Wright. Transparent network
security policy enforcement. In Proceedings of USENIX
ATC, 2000.

[7] K. W. Miller, J. Voas, and G. F. Hurlburt. BYOD: security
and privacy considerations. It Professional, 14(5):0053-55,
2012.

[8] O. Morandi, F. Risso, P. Rolando, S. Valenti, and P. Veglia.
Creating portable and efficient packet processing
applications. Design Automation for Embedded Systems,
15(1):51-85, 2011.

[9] B. Morrow. BYOD security challenges: control and protect
your most sensitive data. Network Security, 2012(12):5-8,
2012.

[10] M. R. Nascimento, C. E. Rothenberg, M. R. Salvador, C. N.
Corréa, S. C. de Lucena, and M. F. Magalhdes. Virtual
routers as a service: the routeflow approach leveraging
software-defined networks. In Proceedings of the 6th
International Conference on Future Internet Technologies,
pages 34-37. ACM, 2011.

[11] F. Risso and I. Cerrato. Customizing data-plane processing in
edge routers. In Software Defined Networking (EWSDN),
2012 European Workshop on, pages 114-120. IEEE, 2012.

[12] R. Sailer, T. Jaeger, X. Zhang, and L. Van Doorn.
Attestation-based policy enforcement for remote access. In
Proceedings of the 11th ACM conference on Computer and
communications security. ACM, 2004.

[13] Symantec. Internet security threat report 2014. http://
www.symantec.com/security_response/
publications/threatreport.jsp.

[14] A. Tongaonkar, S. Dai, A. Nucci, and D. Song.
Understanding mobile app usage patterns using in-app
advertisements. In Passive and Active Measurement.
Springer, 2013.

[15] Q. Xu, T. Andrews, Y. Liao, S. Miskovic, Z. M. Mao,

M. Baldi, and A. Nucci. FLOWR: A Self-Learning System
for Classifying Mobile Application Traffic. In Proceedings of
ACM SIGMETRICS, 2014.

http://hostap.epitest.fi/
http://hostap.epitest.fi/
http://mitmproxy.org/
http://www.symantec.com/security_response/publications/threatreport.jsp
http://www.symantec.com/security_response/publications/threatreport.jsp
http://www.symantec.com/security_response/publications/threatreport.jsp

	Introduction
	Related work
	System Architecture
	Overview
	Virtualization Layer
	Network Applications (Net-apps)
	Policy Enforcement Example

	Evaluation
	Implementation and Experiment Setup
	Single-user Tests
	Multi-user Tests

	Conclusion and Future Work
	Additional Authors
	References

