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Abstract. Increased adoption of mobile devices introduces a new spin to Inter-
net: mobile apps are becoming a key source of user traffic. Surprisingly, service
providers and enterprises are largely unprepared for this change as they increas-
ingly lose understanding of their traffic and fail to persistently identify individual
apps. App traffic simply appears no different than any other HTTP data exchange.
This raises a number of concerns for security and network management. In this
paper, we propose AppPrint, a system that learns fingerprints of mobile apps via
comprehensive traffic observations. We show that these fingerprints identify apps
even in small traffic samples where app identity cannot be explicitly revealed
in any individual traffic flows. This unique AppPrint feature is crucial because
explicit app identifiers are extremely scarce, leading to a very limited characteri-
zation coverage of the existing approaches. In fact, our experiments on a nation-
wide dataset from a major cellular provider show that AppPrint significantly out-
performs any existing app identification. Moreover, the proposed system is robust
to the lack of key app-identification sources, i.e., the traffic related to ads and ana-
lytic services commonly leveraged by the state-of-the-art identification methods.

1 Introduction

Mobile apps are expected to dominate Internet in the post-PC era [9]. Running on ubiq-
uitously adopted smartphones and tablets, mobile apps support users in numerous daily
activities. This attracts both individuals and enterprise users, opening a number of new
opportunities. However, managing this relatively young ecosystem is still in its infancy.
Even basic identification of hundreds of thousands of apps existing in Internet traffic is
a challenge. This has dramatic implications on security and network management be-
cause it entails that enterprises and network operators cannot impose any meaningful
policies on mobile users. Similarly, being unable to distinguish the traffic of individual
apps makes isolation of malicious or infected apps difficult, if at all possible.

The key challenge we address is that mobile apps cannot be presently distinguished
at many levels. First, the apps predominantly communicate with their host services via
HTTP [14], which makes protocol- or port-based identification [10] ineffective. Even
deep packet inspection largely fails because app traffic may not contain any explicit app
identifiers, such as app names. In fact, we measured that these identifiers exist only in
1% of mobile traffic, while the rest is completely unknown to any characterization. Also,
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a widespread use of cloud and CDN (content delivery network) services invalidates any
identification based on service-host IP addresses or domain names.

In this paper, we present AppPrint, a system capable of identifying the apps at a
granularity of arbitrarily small traffic samples. This means that app identification be-
comes much more frequent and its traffic coverage increases. In contrast to the state-
of-the-art approaches that solely rely on temporally sparse occurrences of explicit app
identifiers [2,3,6,8,11,14], AppPrint can identify the most likely apps even when such
identifiers are not present. For example, an operator of the AppPrint system could slot
traffic in intervals as small as 10 seconds and identify the most likely apps for each slot
and for all users in it with a high confidence. This is achievable due to two key AppPrint
novelties: (i) learning elaborate app fingerprints from a priori limited app-identification
data, and (ii) creating app fingerprints from features that may span multiple different
traffic flows.

Specifically, we create app fingerprints as collections of tokens, e.g., any generic
key-value pairs in URLs or any substrings of HTTP header fields, such as User-Agents
or Cookies. Our intuition is that such tokens would be representative of their apps either
individually or in groups; either by parameter names (keys) or parameter values. For ex-
ample, an app can be designed in a specific development framework which makes the
names of app parameters unique (i.e., app-identifying). Similarly, if several apps are
developed on the same framework, their parameter values as well as the occurrences
of specific parameters across flows could be sufficiently unique to identify each app.
Leveraging this intuition enables AppPrint to characterize the traffic even when no ex-
plicit app identifiers are present. We achieve this by measuring the highest token-set
similarity between an observed set of flows and readily learned app fingerprints.

One of the key contributions of AppPrint is its continual learning and refinement of
app fingerprints. While the system does require some seeding with explicit app iden-
tifiers, it can expand this knowledge towards discovering many new fingerprints in the
previously uncharacterised flows. Specifically, AppPrint can be bootstrapped by a sin-
gle app identifier present in some particular flows (e.g., embedded advertisement flows),
and expand that knowledge to fingerprinting many other types of flows (such as social
networking flows, audio streaming flows, etc.). We achieve this by effectively measur-
ing collocation persistence between the seeding tokens (e.g., explicit app identifiers)
and other tokens in the neighboring flows.

Another key feature of AppPrint is independence of its fingerprint learning and app
identification processes. This is crucial for achieving a broad characterization coverage.
Specifically, while the learning requires some seeding, the identification process has no
such constraints. It can apply any fingerprints learned at any time (even offline) towards
revealing the most likely apps “hidden” in the traffic. We developed an algorithm that
facilitates this separation and named it MAP-SCORE.

We evaluate AppPrint on a week-long nationwide traffic trace from a major cellular
provider in the United States. In this real environment, AppPrint offers an order of
magnitude improvement over the state-of-the-art solutions in terms of app identification
coverage.

The rest of the paper is organized as follows. Section 2 overviews the related work.
Section 3 introduces AppPrint, while Section 4 evaluates the proposed methods on the
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lab traffic that contains app-identification ground truth, as well as on the real ISP traffic.
Section 5 summarizes this work.

2 Related Work

A number of papers have identified that network administrators increasingly lose vis-
ibility in their traffic due to mobile apps being indistinguishable from generic HTTP
communications [4, 5, 13]. Hence, identifying apps via common approaches of proto-
col identification or port numbers is no longer effective. This situation calls for a new
paradigm.

The most straightforward way to identify apps is to look for app names in HTTP
User-Agent fields [14]. However, this has serious limitations on the widely accepted
Android platform where app developers do not follow any conventions in creating their
user agents [3], i.e., the user agents may not contain app names. Another approach is
to look for app identifiers in auxiliary services embedded in the apps, such as ads or
analytics (A&A) [2, 3, 11]. The embedding of such services is common, especially in
free apps [7, 11, 13]. However, the flow coverage of such identification is very low,
because A&A flows are present in only a small fraction of traffic - especially for paid
apps.

Dai et al. [3] improved app identification capabilities by developing a system that
automatically runs Android apps and devises app fingerprints from the generated traf-
fic. This approach can be effective, but it would be difficult to scale it to the size of
current app markets with hundreds of thousands of apps. It would be even more diffi-
cult to obtain fingerprints that are representative of true human app usage, given that
intelligent tools for interaction with diverse app UIs are still lacking. Thus, the obtained
fingerprints may not be comprehensive or representative. For example, it would be very
difficult for this system to produce representative signatures for apps that require user
registration or logins, e.g., the popular Android Facebook app.

Choi et al. [2] proposed installing a monitoring agent in mobile devices. The agent
helps in building ground truth knowledge for app identification. With the data collected
in a campus network, the authors generated classifiers based on HTTP user-agent fields,
HTTP hostname fields, and IP subnets. However, installing such agents on user devices
may be challenging due to privacy concerns. Besides, deploying the agent at a large
scale has many other practical challenges.

AppPrint shares only the initial sources of app-identification knowledge (e.g., User-
Agent fields or A&A services) with the existing approaches. These sources are only
seeds that help AppPrint to learn and apply its fingerprints towards characterization of
a much wider span of traffic flows.

3 Methodology

In this section, we introduce AppPrint by first providing some basic intuition behind its
design. We then describe its two core algorithms: (i) MAP, a method for discovery and
learning of new app fingerprints, and (ii) SCORE, a method for identification of apps in
the observed traffic (based on MAP’s app fingerprints).
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3.1 AppPrint Overview

We are motivated by the fact that existing app identification approaches [2, 3, 6, 8, 11,
14] characterize only a small fraction of mobile traffic. AppPrint tries to increase the
characterization coverage by learning a priori inconclusive features that may exist in
the traffic and prove to have app identifying properties.

We focus on two types of features: (i) tokens that can be specific strings, or param-
eter names, or parameter values in HTTP headers, and (ii) traffic flow groups that can
jointly point to an app identity. While it is a priori unknown whether useful instances
of these features exist in the traffic, there is a number of reasons for them to be present.
For example, app developers commonly collect statistics about their apps. Thus, there
must be a way to for the apps to report back to their developers via some specific for-
matting of data. As an illustration, many apps use Apsalar library [1] that employs “i=”
URL parameter to report executable filenames of active apps. This is an app-identifying
token. Similarly, apps may require exchange of very specific parameter names to en-
sure proper execution. For example, Angry Birds app uses a unique “u audio=” URL
parameter to configure sound volume.

Flow grouping is another key source of AppPrint’s intelligence. The grouping is in-
valuable when individual traffic flows do not reveal any app-specific tokens. We learned
that mobile apps do exchange such generic traffic, e.g., in order to transfer generic web
objects such as pictures and audio. In such cases, AppPrint tries to propagate app iden-
tification from the identifiable flows to the ones that cannot be characterized. Moreover,
even when none of the grouped flows contains explicit app identifiers, the tokens dis-
persed over several flows may jointly reveal app identity.

3.2 Initial App Identification Knowledge

Initial seeding knowledge for AppPrint can be obtained by many means. While such
bootstrapping is neither the focus nor the contribution of this paper, we describe some
aspects of it for completeness.

The values of explicit app identifiers are publicly available in app markets and can
be easily collected for the system’s bootstrap. We focus on two most popular mobile
app markets: Google Play (Android) and Apple’s iTunes App Store (iOS). To this end,
we developed crawlers that gather the identifiers for all apps existing in these markets.
For Android apps, we collect app names (such as TuneIn Radio) and app package
denominators (such as tunein.player); for iOS apps, we crawled app names and
unique 9-digit app IDs (such as 319295332). We verified that such tokens do appear
in some URL parameters, User-Agent fields, substrings of HTTP referer fields, etc.
Also, the tokens are employed by various services embedded in mobile apps, such as
advertisements and analytics (A&A). An example of an app name included in the User-
Agent field is illustrated in Figure 1.

3.3 MAP: Auto Fingerprint Generation

The MAP algorithm collects statistics about tokens, thus effectively serving as a knowl-
edge repository of AppPrint. It continually self-learns and refines app fingerprints dis-
covered in the traffic by means of flow grouping. An app fingerprint is a set of one
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GET /Config.ashx?partnerId=xwhZkVKi&provider= ggl&latlon=
&version=6.1&render=json HTTP/1.1

User-Agent: TuneIn Radio/6.1(Android 15;sdk;Java)
Host: opml.radiotime.com

Fig. 1. App identifier “TuneIn Radio” included in the HTTP User-Agent field.

or more tokens that strongly identify an app. MAP keeps a tally of all individual to-
kens observed in the traffic, as well as the apps to which each token may be attributed.
Subsequently, if a token proves to be predominantly associated to an app, it becomes a
fingerprint component of that app. Based on this principle, we next develop the MAP
algorithm.
Flow grouping: Flow grouping is our technique to address the issue of inconclusive
data, i.e., the majority of traffic that does not contain any explicit or readily known
app identifiers. The idea is to first group the flows that are temporally close to each
other. We perform the grouping around the instances of flows which contain known
or readily learned strong app identifiers. Then, we let the flow whose app identity can
be determined suggest or propagate that identity to all other tokens in its flow group
- even the tokens in the neighboring (unidentifiable) flows. Consequently, in different
instances of flow grouping, a token may be suggestively associated to different apps. To
identify the most likely app, we consider all tokens and their association in the observed
flows and let the SCORE algorithm decide.

The key challenge of flow grouping is that individual instances of flow groups may
not be sufficient to learn true token-to-app associations. Scenarios like app multitasking
and device tethering may cause flows of many apps to appear close in time, thus induc-
ing noise in the grouping process. To eliminate such noise, one could train AppPrint in
a controlled environment and ensure grouping of flows that belong to individual apps.
We adopt a different strategy that is easier to scale, especially in larger networks such
as cellular provider networks, university campuses or enterprise environments. We thus
focus on observations of numerous flow groups generated by large user populations
during AppPrint’s activity. Then, given that users use different apps and run them at
different times, the noise should disperse and become easily identifiable: The tokens
that persistently collocate with specific apps become fingerprint tokens, while other to-
kens that associate equally likely with many apps get disregarded. We will verify this
approach experimentally in Section 4.

An illustration of flow grouping is given in Figure 2: Flow group g(f ix) is formed
around an identifiable anchor flow f ix, which contains an explicit or strong app iden-
tifier. Here, parameter i designates i-th flow grouping for a given mobile user. The
grouping is based on two criteria: (i) the flows must originate from the same source
(source IP address), and (ii) the flows that cannot be characterized must be less than TG
seconds away from the anchoring flow f ix. TG is a configurable parameter addressed
in Section 4. This ensures strong time and source locality of app identification. In the
illustrated example, flow f ix would suggest its app identity to all tokens in the group,
i.e., its own tokens and the tokens of other flows in g(f ix).
MAP repository: The MAP repository is a knowledge base that reveals tokens suitable
for fingerprints of each app. The repository is formed as a matrix in which each row
corresponds to a token t, and each column corresponds to a suggested app x. The matrix



6

TG TG 

fx 
1 

TG 

fx 
2 

g(fx 
1) g(fx 

2) 

TG 

Fig. 2. MAP flow grouping.

element t, x, denoted as MAPt,x, stores the number of instances in which token t was
suggestively associated with app x.

Table 1 shows a snapshot of the MAP repository. Note the additional column in
the repository which contains the total count of each token’s suggested associations
to any apps (denoted as column ∗ in Table 1). In the illustrated example, the repository
indicates that tokens angrybirds and rovio are by far most frequently associated to
Angry Birds app, which qualifies them for Angry Birds fingerprints. On the other hand,
tokens such as google and mobile have dispersed associations across numerous
apps, thus not being suitable for any app fingerprints.

Table 1. MAP repository example.

tokens/apps * Angry Birds Piggies Google Maps ...
angrybirds 500 450 0 0 ...

rovio 700 600 50 0 ...
mobile 3000 50 30 100 ...
google 2000 60 40 200 ...

... ... ... ... ... ...

3.4 SCORE: Probabilistic App Identification

SCORE algorithm determines the most likely app identities in the observed traffic. The
algorithm measures similarity between the tokens found in the traffic and all token-
to-app associations suggested by the MAP repository, thus identifying the most likely
corresponding app. The decisions span flow sets and each decision is referred to as app
identification instance.

SCORE flow sets: Flow sets are the units of SCORE’s decision making. They are
formed by bundling traffic in a different manner than MAP’s flow grouping. This en-
ables MAP and SCORE to operate independently and if needed simultaneously. The
difference stems from the fact that SCORE does not need any flows with explicit app
identifiers, because app identity can be readily suggested by the MAP repository. This
is one of the key advantages of AppPrint: The system is capable of identifying apps even
when none of the flows (in a flow set) can be a priori characterized individually.

For flow sets, a simple time slotting mechanism suffices: Flows that originate from
the same source (i.e., source IP address) and have starting times that fit the same time
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Fig. 3. SCORE grouping of flow sets.

slot constitute a flow set instance. The duration of each time slot TS is a configurable
parameter. A flow set example is illustrated in Figure 3.

SCORE and eccentricity metrics: To identify the most likely app for a given flow set,
we develop a pair of metrics that leverage indications of the MAP repository. Let ST

be a set of tokens in a flow set F and SA be the set of all apps in MAP repository. The
similarity between the flow set F and an app x is evaluated as:

SCORE(x) =
∑
t∈ST

MAPt,x

MAPt,∗∑
a∈SA

δ(t, a)
, (1)

where MAPt,x is the value of the t, x element in the MAP repository, MAPt,∗ is the
total number of token t’s suggested associations to any apps, δ(t, a) is an indicator of t
being associated to an app a in the repository, i.e., δ(t, a) = 1 if MAPt,a 6= 0.

The intuition behind the SCORE metric is the following: If tokens in the flow set
ST mostly associate with an app x, the app should score high as provided by the ratio of
MAPt,x and MAPt,∗. Moreover, the token set should not have many other suggested
app associations, as accounted by

∑
a∈SA

δ(t, a). The combination of these two criteria
results in a high confidence that a decision about app identity for a flow set can be made
unambiguously.

Once the SCORE metric for the flow set F is calculated against all candidate apps
in the MAP repository, AppPrint decides whether the flow set can be attributed to the
highest scoring app. This decision is based on the eccentricity metric. The metric re-
quires that the score of the highest ranking app is significantly different from any other
potential apps. Given the top ranked app x1st and the second-best app x2nd, the eccen-
tricity φ is a relative difference in their scores:

φSCORE =
SCORE(x1st)− SCORE(x2nd)

SCORE(x1st)
(2)

The final result positively associates app x1st to the flow set if and only if the
SCORE and eccentricity metrics are higher than Θ and Φ thresholds, respectively.

4 Evaluation

In this section, we evaluate the proposed MAP-SCORE algorithm (MS) against two
state-of-the-art approaches for discovery of app identities: (i) one based on the content
of HTTP User-Agent fields (UA), and (ii) another based on explicit app identifiers found
in any HTTP header fields (HH). Both of these reference approaches rely solely on
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explicit app identifiers, which makes them perfectly accurate (although on a limited set
of flows).

In preparation, we conducted exhaustive sensitivity testing of the three key MAP-
SCORE parameters: (1) flow (set) grouping interval T , (2) threshold Θ of the SCORE
metric, (3) threshold Φ of the SCORE eccentricity. We found that app classification is
largely consistent over various parameter settings whenever T is around 10 seconds, Θ
is between 0.1 and 0.2 and Φ is around 0.3. The parameters set for our experiments are
T = 10s, Θ = 0.1 and Φ = 0.3.

4.1 Datasets

Lab Trace: To evaluate AppPrint, we partly use lab traffic generated by running in-
dividual apps in order to establish a ground truth. To this end, we downloaded 40K
Android apps from Google’s Play Store and collected their traffic. Each app was run on
multiple versions of Android emulators provided by the Android SDK. We use the An-
droid monkey tool [12] to emulate user interaction with the apps. Similarly, we collected
7K popular apps from Apple’s iTunes App Store. Given that Apple does not provide
any emulators for iOS devices, we developed one and enabled it to automatically install
and execute apps, as well as collect app traffic.
Real Trace: We also evaluate AppPrint on a large anonymized dataset from a major US
cellular provider. The dataset contains 7 days of traffic from about 200K anonymous
and mostly Android users. This dataset faithfully represents actual human usage of
mobile apps. However, it does not provide any a priori information of apps behind the
traffic, except for a small portion of flows (less than 1%) whose apps can be determined
via User-Agent (UA) or header data (HH) approaches.

4.2 App Identification

We first evaluate the traffic coverage characterized by MAP-SCORE (MS) in the real
trace. Due to the lack of comprehensive ground truth in this trace, it is impossible to
fully evaluate correctness of MAP-SCORE’s results. Thus, we later conduct precision
analysis on the lab trace in order to provide a holistic view in AppPrint’s capabilities.

Our experiments use the first 6 days of the real trace to provide training for the MAP
repository. Our evaluation is based on running SCORE against the flow sets in the 7th

day of data. The same evaluation methodology is used for the other two approaches, user
agents (UA) and header data (HH), i.e., we evaluate their characterization capabilities
only on the 7th day of data.

Coverage of the real traffic: The number of identified app instances is used as a
coverage comparison metric. For MAP-SCORE, an app-instance identification corre-
sponds to SCORE positively associating an app fingerprint to a flow set. By design,
there can be at most one such app identification per flow set. For HH and UA, we count
the total number of distinct app identifications in each flow set - i.e., depending on the
number of different explicit app identifiers found in the flow set, there may be more
than one app identified per flow set.
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Fig. 4. Number of identified app instances.

As plotted in Figure 4, MAP-SCORE (MS) identifies 1, 729K app instances, while
UA identifies close to 13K app instances and HH about 86K app instances. Coverage-
wise, MAP-SCORE performs an order of magnitude better. We also note that UA is
not as effective as described in [14]. This is due to the fact that “our” cellular provider
mainly supports Android, the platform that doesn’t force developers to code explicit app
identifies in User-Agents. In contrast, the trace studied in [14] included a significant por-
tion of the traffic from iOS devices, whose apps predominantly include app-identifying
information in User-Agents.

Among 1, 729K positive fingerprint matches of MAP-SCORE, we found that 84K
are consistent with the indications of UA or HH approaches. This can be used as a
hint of MAP-SCORE’s accuracy. Further accuracy analysis could not be conducted on
the real trace because it does not contain the ground truth for the remaining 1645K =
1729K − 84K MAP-SCORE app identifications.

Precision evaluation: In order to further assess accuracy of MAP-SCORE results,
we use the lab trace which does contain the ground truth of flow-to-app associations.
We built the trace by combining lab-generated traffic of 1000+ apps which appeared
in the MAP repository (i.e., the repository trained on the first 6 days of the real trace).
Then, SCORE was run against such traffic. To evaluate app-identification precision
and coverage, we use the standard ratios of true positive and false positive detections.
Our results indicate that MAP-SCORE achieves 81% flow-set coverage with 93.7%
precision. This supports our claim that AppPrint can identify the most likely apps with
a wide flow-set coverage and with a high confidence.

Further, this result supports our assumption about the noise canceling properties of
MAP-SCORE fingerprints (stated in Section 3.3). Specifically, even though MAP was
trained on the noisy real traffic, fingerprint indications were still highly precise when
applied on the ground truth of the lab traffic. Thus, the app fingerprinting noise largely
dispersed over time and large user population as we expected.

4.3 Effectiveness of Grouping Flows

Next, we evaluate the importance of flow grouping, i.e., the importance of using tokens
from multiple flows towards building app fingerprints. We take an extreme approach
by preventing any grouping, i.e., we apply AppPrint on the flow sets containing only
single flows. The settings for these experiments are similar to the ones described in
Section 4.2.

Real traffic: We first evaluate the number of identified app instances on the 7th day
of the real traffic. The results for header data (HH) and user agent (UA) approaches do
not change significantly; a slight increase in identification is due to counting distinct
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app identifications per each flow vs. counting them once per flow set. Next, this setting
enables us to better qualify MAP-SCORE (MS) results. Specifically, using per-flow
indications of deterministic HH and UA approaches, we can classify MS results as (i)
true positives (TP) when MS agrees with HH or UA, (ii) false positives (FP) when
there is a disagreement, and (iii) non-verifiable characterizations (NV) when HH or UA
cannot characterize a flow, but MS can.
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Fig. 5. Number of identified app instances without flow grouping.

The results in Figure 5 indicate that although MS identifies one order of magnitude
more app instances than with flow grouping enabled (compare Figure 5 and Figure 4),
the number of true positives decreases from 85K to 26K. This clearly demonstrates a
positive effect of flow grouping on AppPrint’s accuracy.
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Fig. 6. Precision and coverage of app-instance identifications in the lab trace without flow group-
ing.

Lab traffic: We use the lab trace to assess the impact of single-flow flow sets on
precision (see Figure 6). Our results indicate that MAP-SCORE (MS) achieves much
higher coverage than HH and UA, but its precision drops to 82.3% (about 10% less than
with flow grouping enabled, see Section 4.2). In summary, not leveraging tokens from
multiple flows has notable negative effects on both coverage and precision of AppPrint.

4.4 Identifying Apps without A&A Traffic

To evaluate AppPrint’s capabilities on paid apps (without incurring high monetary costs
of purchasing the apps), we leverage the key difference between free and paid apps: Paid
apps mostly do not exchange ads and analytic (A&A) traffic [7, 13], while the rest of
their communications are largely similar to free apps. Thus, we can still employ our lab-
and real-traffic traces by removing all A&A flows. Also note that our MAP repository
still remains representative because most paid apps have their free counterparts devel-
oped on the same code base, thus using similar traffic tokens (readily captured by our
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MAP repository). Our experimental settings are otherwise similar to the ones described
in Section 4.2.
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Fig. 7. Number of app instances identified in the real trace without A&A flows.

Figure 7 shows the number of app instances identified by the three techniques on
the real trace. In this experiment header data (HH) approach identifies only 3.7K app
instances, user agent (UA) approach identifies 13K (remaining unaffected), and MAP-
SCORE (MS) identifies 1, 508K. In comparison with A&A flows included (see Fig-
ure 4), MAP-SCORE identifies only about 11% less app instances.

For the lab trace, precision and coverage are plotted in Figure 8. Note that the cov-
erage of HH gets very low because this technique largely relies on A&A traffic for
explicit app identifiers. UA still has a low coverage, but it is largely unaffected by the
lack of A&A flows. Finally, MAP-SCORE associates apps to about 50% of flow sets,
but its precision drops to around 70%.
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Fig. 8. Precision and coverage of app-instance identifications on the lab trace without A&A flows.

5 Conclusion

The paper proposes AppPrint, a system for automatic identification of mobile apps in
arbitrarily small samples of Internet traffic. AppPrint enables network administrators
to regain fine grained visibility into their traffic, thus benefiting network management
and security. The system achieves this by its unique capability to learn app fingerprints
dispersed over multiple and often individually inconclusive traffic flows. We evaluated
AppPrint on a trace of a large cellular provider in the United States and on our com-
prehensive lab trace spanning thousands of apps. The results show that AppPrint out-
performs state-of-the-art approaches by identifying over one order of magnitude more
instances of apps in the real traffic, while achieving up to 93.7% precision.
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