
FLOWR: A Self-Learning System for Classifying Mobile
Application Traffic

Qiang Xu#, Thomas Andrews#, Yong Liao∗, Stanislav Miskovic∗, Z. Morley Mao#

Mario Baldi∗, Antonio Nucci∗
#University of Michigan, ∗Narus Inc.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: network
monitoring, wireless communication; C.4 [Performance of
Systems]: measurement techniques

General Terms
Experimentation, Measurement, Performance

Keywords
Mobile Application Identification, Traffic Classification

1. INTRODUCTION
We aim to devise a method that can identify mobile apps

related to each individual traffic flow in the wild. Mobile
apps are becoming preferred means of Internet access for a
growing user population. Such departure from browser based
Internet poses a unique challenge to traffic management tools,
still largely incapable of handling mobile apps. Consequently,
enterprises and service providers become hindered by be-
ing unable to deploy effective mobile policies and security
solutions.

Traditionally, desktop applications and networking proto-
cols were identified by signatures derived from transport-layer
ports, ip addresses, or domain names [2, 5]. It is not suitable
for mobile apps any more. The main reason is that most
mobile apps communicate via generic HTTP/HTTPS traffic,
thus being a priori indistinguishable from Internet browsing.
State-of-the-art solutions attempted to develop signatures
via user studies or app emulations [6, 4, 1]. Neither of the
two approaches scales due to a number of key challenges:
• Similarity. Besides using similar protocols (HTTP/HTTPS),

mobiles apps communicate with largely similar IP-/domain-
level destinations, Content Delivery Networks (CDNs), and
cloud services, which makes them difficult to distinguish.
• Scalability. With hundreds of thousands of apps, the iden-

tification has to devise very efficient matching algorithms
at line speeds. Moreover, the references for matching have
to be obtained efficiently. One cannot assume running all

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
SIGMETRICS’14, June 16–20, 2014, Austin, Texas, USA.
ACM 978-1-4503-2789-3/14/06..

existing apps to get the references, or keeping a large state
as means of identification.
• Ground truth. Being infeasible to exhaustively establish

references for app characterization, one loses strong ground
truth. Generally, such ground truth would be attainable
via app-identifying and a priori unknown features such as
developer tags in traffic, proprietary app-identifying URL
parameters, hostnames, etc.
• Coverage. The issue of coverage is closely related to app

matching efficacy: Ideally, one should know all communica-
tion states and patterns of each app to perfectly characterize
each traffic flow, similarly to a sophisticated app signature
generation scheme described in [3]. However, such thorough
identification of all apps’ flows would require exhaustive and
unattainable offline training.

In this paper, we develop a flow recognition system called
FLOWR, which identifies in real time the app origins of
individual flows in traffic. The system is based on discovering
and learning a priori uncertain hints that may exist in the
traffic and point to particular apps. Over time, FLOWR
automatically learns an increasing number of such hints and
evaluates the confidence in their app-identifying capabilities.
To optimize our identification capabilities to line speeds, we
only look into HTTP header metadata.

We believe there are many reasons for the existence of
app-identifying features in the traffic. For example, devel-
opers generally like to track adoption of their apps, so they
put some reporting capabilities in the apps’ communications,
e.g., using specific user agent tags. Moreover, we know that
ads and analytic services (such as doubleclick.net and
flurry.com) embed explicit app identifiers in HTTP head-
ers for accounting purposes. Nevertheless, our preliminary
experiments showed that the percentage of such explicitly
identifiable flows is extremely small, while our goal is to
enable large flow-identification coverage.

Our methodology consists of three key components: (1) KV
tokenization, which parses HTTP traffic and extracts all key-
value (KV) pairs that may become app-identifying features,
(2) knowledge base, which contains all previously known KV
pairs and a confidence measure of their app-identifying capa-
bilities, and (3) flow regression, which measures co-occurrence
of flows (and their embedded KV pairs) as a confidence indi-
cation of the flows (and their KV pairs) originating from the
same apps. To the best of our knowledge, this constitutes
the first system to identify apps at flow level in real time
and at a scale suitable to large operational networks, such
as nationwide mobile networks or large enterprises.

doubleclick.net
flurry.com

2. CLASSIFICATION TECHNIQUES
Here, we describe the three key components of the FLOWR

system.

2.1 Extracting Flow Signatures
We extract KV pairs from HTTP URIs. We only focus on

HTTP requests because our preliminary experiments showed
that HTTP responses contribute only marginally to app-
identification. HTTP URIs have the following well-formatted
syntax: http://host_name/path?query#fragment. The query
consists of a sequence of KVs formatted as k1=v1&k2=v2&...&kN=vN.
For example, KV pairs can be adkapid=67526, age=45, and
zipcode=90210.

2.2 Seeding the Knowledge Base
We identified three general types of KV pairs based on their

app-identifying capabilities: irrelevant KVs (e.g., age=45),
KVs explicitly referring to app identities (e.g., package-

Name=zz.rings.rww2), and other KVs whose app identifying
capabilities are initially ambiguous (e.g., sdkapid=67526)
and which need to be evaluated further by our algorithm.
Ad and analytic services, such as doubleclick.net, are par-
ticularly rich of explicit KV pairs. Hence, FLOWR relies on
them to provide seeds for our knowledge base. Then, by
means of flow regression, we spread these knowledge seeds
to other observed KV pairs.

2.3 Flow Regression - Inferring KV Identities
We devised flow regression as a technique to eliminate

irrelevant KVs and infer app identities via scoring ambiguous
KVs. Intuitively, if two flows repeatedly co-occur, they are
likely to come from the same app. To be confident in flow co-
occurrence properties, we observe flows over various users and
various disjoint time intervals. As a result, flow regression
scores observed flow co-occurrence likelihoods, as well as ties
the ambiguous KVs in these flows to app identities of readily
app-identifying KVs also found in the flow set.
FLOWR digests co-occurrence likelihoods as follows. In

the background, if a KV appears frequently close to some flow
related to an app X, i.e., P[A = X|KV] ≈ 1, FLOWR adds KV

to its signature set that uniquely identifies the app in the
knowledge base of app identities. Instead of P[A = X|KV] ≈ 1,
we found that a more common case is that KV co-occurs with
X with a certain likelihood of less than 1, i.e., 0� P[KV|A =
X] < 1, which indicates that KV may be generated by apps
other than X as well. Then, as best effort, FLOWR puts KV

into a signature set that narrows down the set of the flow’s
candidate apps.

Next, FLOWR generally extracts multiple KV pairs per
flow and based on the KV scores the algorithm needs to
determine app identity. In our implementation, the best KV
determines the identity, i.e., the KV pair with most frequent
and most unique co-occurrence with an app ties the entire
flow to that app’s identity.

3. EVALUATION
FLOWR is evaluated using an anonymized traffic trace

captured on a major 3G cellular network in the US. Our eval-
uation demonstrates that FLOWR is able to learn new KVs
from a minimal seeding app identification knowledge base.
The learned new KVs are consumed by FLOWR to classify
an order of magnitude more HTTP flows, whose originating
apps could not be identified via the seeding knowledge.

0

3x

6x

9x

 1 2 3 4 5 6 7 8 9 10

n
o
rm

a
liz

e
d
 c

o
v
e
ra

g
e

round #
Figure 1: Flow coverage.

Our experiment is seeded with only one piece of manually
created knowledge. FLOWR is instructed as to which KV in
an HTTP message sent to doubleclick.net, a popular ad
service used by both Android and iOS apps, indicates mobile
app identities. We run FLOWR’s flow regression on the traffic
trace iteratively. In each round, FLOWR considers a new KV
as identifying an app only when the estimated false positive
rate of using that KV is lower than 1%. FLOWR estimates
the false positive rate via a set of carefully tuned and tested
heuristics, whose details are omitted here due to space limit.
Additional KVs selected in earlier execution rounds are used
in later rounds as seeding knowledge. Figure 1 shows the
coverage, i.e., the number of classified flows, normalized to
the one obtained with the initial seeding knowledge. Note
that almost 9× more flows can be classified with only 3 ∼ 4

rounds of flow regression.

4. CONCLUSION
In this study, we developed the FLOWR system for de-

termining the app identities of network flows in mobile net-
works in real time with minimal supervised learning. FLOWR
adopts three creative techniques: KV tokenization, ad and
analytic services based training, and flow regression. With-
out consuming exhaustive training effort, flow regression can
determine the app identities for the flow signatures produced
by KV tokenization through monitoring the co-occurrence
events between flow signatures. We believe that FLOWR
enables mobile network operators to extract valuable insight
from mobile network traffic.

5. REFERENCES
[1] Netsense. http://netsense.nd.edu.
[2] Cui, W., Kannan, J., and Wang, H. Discoverer:

Automatic Protocol Reverse Engineering from Network
Traces. In Proc. USENIX Security (2007).

[3] Dai, S., Tongaonkar, A., Wang, X., Nucci, A., and
Song, D. NetworkProfiler: Towards Automatic
Fingerprinting of Android Apps. In Proc. IEEE
INFOCOM (2013).

[4] Qian, F., Wang, Z., Gerber, A., Mao, Z., Sen, S.,
and Spatscheck, O. Profiling Resource Usage for
Mobile Applications: A Cross-Layer Approach. In Proc.
ACM MobiSys (2011).

[5] Sen, S., Spatscheck, O., and Wang, D. Accurate,
Scalable In-Network Identification of P2P Traffic Using
Application Signatures. In Proc. ACM WWW (2004).

[6] Wei, X., Gomez, L., Neamtiu, I., and Faloutsos, M.
ProfileDroid: Multi-Layer Profiling of Android
Applications. In Proc. ACM MOBICOM (2012).

http://host_name/path?query#fragment
doubleclick.net
doubleclick.net
http://netsense.nd.edu

	Introduction
	Classification Techniques
	Extracting Flow Signatures
	Seeding the Knowledge Base
	Flow Regression - Inferring KV Identities

	Evaluation
	Conclusion
	References

