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Abstract—One of the most common datasets used by many
corporations to gain business intelligence is event log files.
Oftentimes, the records in event log files are temporally
ordered, and need to be grouped by user ID with the temporal
ordering preserved to facilitate mining user behaviors. This
kind of analytical workload, here referred to as RElative Order-
pReserving based Grouping (RE-ORG), is quite common in
big data analytics. Using MapReduce/Hadoop for executing
RE-ORG tasks on ordered datasets is not efficient due to its
internal sort-merge mechanism. In this paper, we propose a
distributed framework that adopts an efficient group-order-
merge mechanism to provide faster execution of RE-ORG tasks.
We demonstrate the advantage of our framework by comparing
its performance with Hadoop through extensive experiments
on real-world datasets. The evaluation results show that our
framework can achieve up to 6.3x speedup over Hadoop in
executing RE-ORG tasks.

I. INTRODUCTION

Large corporations, such as Google, Amazon and Face-
book, routinely produce and collect terabytes of data on
a daily basis, and continually improve their services and
operations by analyzing the data. Completing the analysis
of data at the scale of terabytes or even perabytes in a short
time becomes a daunting task.

A large class of datasets used to gain business intelligence
are often fundamentally temporal, such as webpage click
streams, network traffic traces, and business transactions.
Furthermore, a lot of analytical tasks over such temporal
data require to group data points of certain feature together
and impose the temporal ordering on the data points in the
same group. Such a processing is usually a vital step in many
important analytical jobs, including:

• User sessionization [8], [14]: widely used in recommen-
dation systems and personalized web services.

• Flow construction [7], [22]: utilized in traffic engineer-
ing and network security.

• Customer statement generation [9], [13]: applied to
billing, fraud detection, and risk analytics.

The input datasets for the above tasks can be generally
seen as event log files, where each record is about an event.
An event usually has some attributes such as the event type,
the event origin, etc., and a timestamp representing when
the event happened. Such datasets often have an important
property. That is, as a dataset is generated, the records in
the dataset are already placed according to certain order. For

event log files, the ordering is often based on the timestamps
of the events, because earlier events are recorded before
events occurring later.

In general, an input dataset in big data analytics with the
same property as event log files can be represented as a list of
records. Each record consists of a primary key, a secondary
key, and a value. The records in the input dataset are already
sorted by their secondary keys. For such an input dataset,
we define the RElative Order-pReserving based Grouping,
or RE-ORG, as a processing that generates a set of output
data points, where each one is generated from a group of
input records. Further, those groups of input records should
satisfy the following requirements: (1) records are grouped
based on their primary keys; (2) all the records in a group
are sorted by their secondary keys.

Since a RE-ORG task usually involves a large quantity
of data, parallelizing its execution is desirable. MapReduce
[11] has emerged as a popular scalable framework for data
intensive computation. It provides a simple programming
model where a user can focus on the business logic in the
analytics without worrying about the complexity of paral-
lel computation. However, realizing RE-ORG tasks using
MapReduce is not efficient. MapReduce groups data by
their keys via utilizing an internal sort-merge scheme, which
cannot take advantage of the fact that the input records
for RE-ORG tasks are already placed in the order of the
secondary key. To enable records with the same primary
key to be sorted by their secondary keys, one has to rely on
time-consuming sorting either in his/her custom code or by
instrumenting MapReduce to do that.

In this paper, we propose a group-order-merge mecha-
nism1 for efficiently realizing RE-ORG tasks in a distributed
environment. Our proposed mechanism maximally utilizes
the property of the input datasets to speed up the execution
of RE-ORG tasks. It efficiently utilizes hash techniques in
grouping records on their primary keys and preserving the
relative order of records with the same primary key. The hash
table used in our mechanism is also designed to provide
a lightweight way for imposing a global ordering of the
grouped records across multiple worker nodes with limited
sorting operations. The global ordering is utilized later when

1The high level idea of the group-order-merge mechanism is also
illustrated in our poster paper [25].



records are merged in parallel by different worker nodes so
as to yield record groups, where each group has all records
with the same primary key and the records are ordered on
their secondary keys.

We have built a distributed framework for supporting the
group-order-merge mechanism by extending Hadoop [2], the
most popular open-source implementation of MapReduce.
Our framework is referred to as Group-Order-Merge Hadoop
(GOM Hadoop). We evaluate it by implementing different
types of RE-ORG tasks with real-world datasets on a local
cluster of machines as well as on Amazon EC2 Cloud [1].
The evaluation results show that our GOM Hadoop can
achieve up to 6.3x speedup over vanilla Hadoop.

The rest of the paper is organized as following. Section
II defines the problem targeted by this paper formally.
Section III briefly surveys how the problem is solved by
using existing techniques. Section IV presents our scheme
for efficiently executing RE-ORG tasks in a distributed
environment. The framework for supporting the proposed
scheme is presented in Section V. Section VI presents the
evaluation results. Section VII surveys related work. Section
VIII concludes this paper.

II. PROBLEM DEFINITION

In this section, we first describe a series of well-known
applications that our framework targets. We then formulate
them into one general problem.

A. Motivating Applications

Click stream analysis. Many companies have web ser-
vices and are interested in analyzing the click stream logs
of their websites, which can provide tremendously valuable
information. For instance, one can detect customer click
patterns from the click stream data, and such click patterns
are used for advertisement promotion, revenue prediction
and service personalization. One common step of analyzing
the click stream data is to divide users’ clicks into sessions
[8], [14]. Usually, a session consists of a user’s temporally
ordered clicks and is considered to be finished if the user
has no clicking for some time duration (e.g., 5 minutes).
Intelligence that can be gathered from sessionized clicks
includes: the sequence of clicks in a session represents the
fine-grained navigational behavior of a user; the session
durations show how much time a user spends on the website
each time; the last accessed pages of those sessions (i.e.,
“killer pages”) give some hints on why a user leaves.

Network traffic analysis. ISPs and enterprise ITs often
use tools such as Cisco NetFlow [3] to extract metadata
about the traffic in their networks. Various network man-
agement and optimization tasks rely on analytics on the
metadata. The metadata analytics often needs to group them
based on certain criteria, such as grouping the metadata for
flows from a common source. It is also often needed to sort
those grouped metadata based on the timestamp, because a

lot of analytics, such as malicious behavior detection, require
to correlate metadata at different time.

Customer statement generation. Banks and e-commerce
companies usually need to divide their customer transactions
into statements in their business operations. Transactions
of each customer are grouped together and then sorted by
their timestamps. The generated customer statements can be
applied to billing, fraud detection and risk analytics [9], [13].

B. Formal Problem Setting
The input datasets for the above applications can be seen

as event log files. In general, such an input dataset can be
treated as a list of records. Each record consists of a primary
key, a secondary key, and a value. The records in the input
dataset are already sorted by their secondary keys. Take the
click stream data for example. As presented in Figure 1,
each click can be seen as a record, where the source IP
can be considered as the primary key, the timestamp as the
secondary key, and other attributes of the click as the value.
These clicks are sorted by their timestamps.

1353637 - - [13/Jun/1998:22:00:01] "GET /r01.gif HTTP/1.0" 200 929
230887 - - [13/Jun/1998:22:00:01] "GET /venues.gif HTTP/1.0" 200 778
1353637 - - [13/Jun/1998:22:00:01] "GET /btm.gif HTTP/1.0" 200 283
1353638 - - [13/Jun/1998:22:00:02] "GET/bord_d.gif HTTP/1.1" 200 231
1353638 - - [13/Jun/1998:22:00:02] "GET /bord_g.gif HTTP/1.1" 200 231

Figure 1. Sampled click stream data. IP addresses are mapped to integers.

We define the RElative Order-pReserving based Grouping
mechanism, or RE-ORG, as a processing that generates a set
of output data points, where each one is generated from a
group of records from the input dataset. For instance, in
the RE-ORG task that splits users’ clicks into sessions, each
session is one output data point.

Now we give the formal definition of RE-ORG mecha-
nism. The input dataset of a RE-ORG task is a list of records:

Rin = [r0, r1, ..., rn]. (1)
Each record ri ∈ Rin consists of a primary key pi, a
secondary key si, and a value vi, i.e., ri = {pi, si, vi}. Any
two records ri and rj in Rin are already ordered by their
secondary keys. Let � represent the ordering. We have

si � sj ⇐⇒ i < j, ∀ri, rj ∈ Rin. (2)
The output of a RE-ORG task is a set of data points, which
is represented as

Rout = {r̂0, r̂1, ..., r̂m}. (3)
Each output data point r̂u in Rout is a generated (i.e, via
an aggregation operation) from a group of input records
associated with the same primary key:

r̂u = F(Gu), (4)
where Gu = [ru0 , ru1 , ..., ruk

] is a group of input records
such that

pui = puj ⇐⇒ rui ∈ Gu and ruj ∈ Gu. (5)
To derive its result, operation F() has to parse the group of
records in the order defined by the secondary key:

sui � suj ⇐⇒ i < j, ∀rui , ruj ∈ Gu. (6)



Take click stream analysis for example: supposing we are
interested in the time a user spends on the website for each
visit, which is measured as the duration of a session, the
operation F() must traverse a user’s clicks (Gu) in the order
of timestamp (sui

) so as to figure out when a session ends.

III. EXISTING MAPREDUCE SUPPORT IN REALIZING
RE-ORG TASKS

In this section, we discuss how to implement RE-ORG
tasks on Hadoop, an open-source framework for running
MapReduce jobs. To ground our discussion, we begin with
an overview of the MapReduce programming model and
Hadoop. Then, we present two commonly adopted mecha-
nisms to implement RE-ORG tasks on MapReduce/Hadoop
and point out their issues.

A. MapReduce/Hadoop

MapReduce, a popular distributed programming model for
processing large-scale datasets in a cluster of commodity
machines, has gained considerable attention over the past
several years [5], [6], [12], [15], [18]–[21], [26]–[28].

The essential functionality of the MapReduce program-
ming model is to group data by key. The MapReduce pro-
gramming model consists of two functions, the map() func-
tion and the reduce() function. Hadoop is the most popu-
lar open-source implementation of MapReduce. It leverages
a sort-merge scheme to group data by key. Hadoop runs a
MapReduce job by dividing it into two phases: the mapper
phase and the reducer phase. When a mapper reads a trunk
of data from HDFS (Hadoop Distributed File System), its
map() function is called to produce a set of key-value pairs.
Each key-value pair is assigned with a partition number,
which is generated by applying a partition function to the
key. Each partition number corresponds to one reducer.

Those key-value pairs are serialized into an in-memory
buffer of a mapper. When the buffer is full, the Hadoop
framework performs a sorting on key-value pairs with parti-
tion numbers (using quicksort by default). The sorting orders
those key-value pairs first on their partition numbers and
then on their keys. A key comparator is used to determine
which key is “larger” when comparing two keys. The sorted
key-value pairs are written into local disk as a spill file.
Multiple spill files are merged together as the mapper output.
A reducer merges the sorted outputs of different mappers it
has fetched, and groups key-value pairs associated with the
same key through a grouping comparator. Then, the reducer
passes the key of each group and the list of values within
that group to its reduce() function.

B. Basic MapReduce Approach

For input dataset Rin = [r0, r1, ..., rn], the basic imple-
mentation of RE-ORG on Hadoop is as follows. A map()
function transforms each input record (e.g., ri = {pi, si, vi})
into one key-value pair, where the key is the primary key

of the record (pi), and the value consists of the secondary
key of the record (si) and its value (vi). In other words,
the output of one map() function is a set of key-value
pairs denoted as [{pi, (si, vi)}, 0 ≤ i ≤ x]. The Hadoop
framework ensures that all the key-value pairs with the
same key are fed into the same reduce() function. In the
reduce() function, one can have custom code to buffer
values and to sort all values based on the secondary key.
However, when it receives a large number of values for a
given key, a reducer may run out of memory. Therefore, this
approach is not scalable.

C. Hadoop Secondary Sort

Hadoop has a built-in scheme for imposing order on
the values. The scheme is usually referred to as Hadoop
secondary sort [23]. In order to realize a RE-ORG task
using Hadoop secondary sort, a user needs to define the
map() function to transform each input record (e.g., ri =
{pi, si, vi}) into one key-value pair as well. Within a key-
value pair, the key consists of the record’s primary key (pi)
and its secondary key (si), and the value is the record’s
value (vi). Since the key produced by the map() function
is a composition of the primary key and the secondary key,
it is often called composite key. Then, by customizing the
key comparator, the user instruments the Hadoop framework
to sort key-value pairs based on the composite keys: first by
the primary key and then by the secondary key. In order
to enable that key-value pairs with the same primary key
will be processed by the same reducer, the user needs to
define a new partition function to assign partition number
according to the primary key only. In addition, the user
needs to provide a customized grouping comparator to group
key-value pairs via their primary keys only. As a result,
all the values with the same primary key are sorted by the
secondary key when fed into the reduce() function.

Although both of the aforementioned approaches can
realize a RE-ORG task, the sort-merge mechanism in the cur-
rent MapReduce/Hadoop framework introduces unnecessary
overhead. It does not utilize the fact that the input records
are already placed in the order of the secondary key.

IV. OUR SOLUTION FOR RE-ORG TASKS

In this section, we present our solution for realizing a RE-
ORG task in a distributed environment, maximally utilizing
the property of the input dataset to speed up the process. We
first describe the challenges of realizing a RE-ORG task in a
distributed environment, and then illustrate how to efficiently
solve those challenges.

A. Challenges of Distributed RE-ORG

A RE-ORG task needs to group records by their primary
keys and to enable records in a group to be sorted by their
secondary keys. As the input records are already sorted
by the secondary key, a RE-ORG task can be easily done



in the single machine scenario. For instance, the machine
sequentially parses each record from the input dataset, and
puts them into a hash table by hashing on their primary
keys. Then, each entry of the hash table has all records
associated with one primary key. Since records are processed
sequentially, each entry also preserves the ordering records
have in the input dataset (sorted by the secondary key).

However, it is challenging to realize a RE-ORG task in
a distributed environment. To support parallel processing,
the input dataset is often divided into multiple pieces and
multiple workers process those pieces in parallel. Although
each worker can group input records using a simple hashing
technique as in the above single machine case, an entry in
its hash table may not have all the records associated with
a primary key. In other words, the records with the same
primary key can scatter in different workers. Therefore, we
need to merge the hashing results from different workers so
that all the records with the same primary key are in the
same group. In addition, records in the merged group need
to be sorted by their secondary keys. Efficiently merging the
hashing results from multiple workers and restoring the order
of records in each merged group are challenges in realizing
distributed RE-ORG.

B. Logic Workflow of Our Solution

We propose a novel group-order-merge mechanism to ef-
ficiently support RE-ORG tasks in a distributed environment.
Our proposed mechanism consists of three phases: the group
phase, the order phase, and the merge phase. A high-level
illustration of our mechanism is presented in Figure 2.

input dataset

group

chunk 0

group group

aggregate

merge merge

aggregate

segments

output

order order order

chunk 1 chunk 2

Figure 2. Basic workflow of the proposed group-order-merge mechanism.

The input dataset is first split into chunks. Each data
chunk is assigned to a logic worker to process2. In the
group phase, a worker sequentially extracts the records from
its input chunk and groups the records by applying a two-
level hashing technique on their primary keys. The output of
the group phase is a set of segments. The reason a worker
produces multiple segments is that multiple segments can
support parallel processing (e.g., parallel merging). Each
segment contains a set of lists. Each list has all the records
in that chunk with the same primary key and those records

2Note that our mechanism does not require the input dataset to be stored
in one single file. As long as each chunk is a consecutive block of the input
dataset, our mechanism will be applicable.

preserve the ordering they have in the chunk (because the
worker sequentially processes records).

The ordering is then applied on each segment so that the
set of lists in the segment can have some global ordering
based on their primary keys. This ordering is important for
efficient merging of segments produced by different workers.
Note that each list is treated as a whole in the order phase,
which is much more efficient than treating each record
individually. After the order phase is done, the worker sends
all its segments to another set of workers. The segments are
sent out in a manner that all lists whose records have the
same primary key will be received by the same worker.

Workers in the merge phase process the segments pro-
duced in the order phase, merge the records (from different
segments) with the same primary key into one final list,
and ensure the records in the list preserving their relative
ordering. Then the user-defined aggregation operation is
applied to the final list to generate the output.

In the rest of this section, we present the detailed de-
scription on how our group-order-merge scheme works. Its
implementation details will be presented in Section V.

C. Grouping via Hashing Primary Key

hash 

f1() 

hash 

f2() 

Bucket 1 

Bucket j 

Bucket nb 

(p,s,v) 

HTj 

1 
2 

...... 

...... 

... 

p1,s1,v p1,s4,v 
p3,s2,v p3,s3,v 

... ... 

... 

... 

... 

Figure 3. Grouping records by their primary keys via hashing.

The group phase groups records from one input chunk
via two-level hashing on their primary keys. The first hash
function, shown as f1() in Figure 3, disperses records into
a fixed number of (nb) hash buckets, where each bucket
corresponds to one segment. The records hashed into bucket
j by f1() are stored in a logical hash table HTj . The
table has an array of entries. Each entry is associated with
an integer index. We leverage another hash function f2()
(independent of f1()) to map the primary key of a record to
an entry index in the table. For simplicity, we assume hash
function f2() can perform 1-to-1 mapping so that an entry
in the logic hash table has only those records with the same
primary key. A new record is always appended to the tail
of the corresponding entry in the hash table. Since records
are processed sequentially and they are already ordered by
the secondary key, the records in each entry preserve the
ordering on their secondary keys.

Note that here we assume all records from one input
chunk can fit in a worker’s memory for the sake of easy
explanation. In Section V-A, we will show that our mecha-
nism is actually implemented with bounded memory usage.

D. Hash Assisted Ordering
The order phase streams out those nb hash tables popu-

lated in the group phase to local disk. Each hash table is



streamed out as one segment. For hash table HTj , the order
phase imposes the ordering of its entries through ordering
their indexes in the table when the entries are streamed out
to local disk. The order of record lists in each segment is
important for efficient merging of segments. Without the
ordering, our merge phase cannot simply use the linear time
merge part of the merge-sort algorithm. Since the order of
the record lists in a segment is based on the hashcodes
(indexes of a hash table), we call it hash-based order.

Once it finishes generating its ordered segments, the
worker sends them out to another set of workers. The
segments are sent out in a way that the jth segments of
all workers running in the order phase will be sent to the
same worker (i.e., worker j) running in the merge phase.

Note that in the ideal scenario without hash collision,
the hash assisted ordering on record lists can completely
avoid comparisons on primary keys when producing ordered
segments. In reality, hash collision is inevitable so we need
comparisons on primary keys in some cases. In Section V-B,
we will present our implementation which can yield ordered
segments with minimal primary key comparisons.

E. Relative Order based Merge

The merge phase merges multiple segments into one final
stream, where the records (from different segments) with
the same primary key are consolidated into one final list.
Records in the final list are ordered by their secondary keys.

We adopt the idea of merge-sort to efficiently merge
multiple segments, since record lists in those segments are
already in the hash-based order. Besides, because different
segments are generated from different data chunks and the
input dataset is ordered by the secondary key, all secondary
keys in segment i should be either “larger” or “smaller” than
all secondary keys in segment j. Therefore, one sorting can
put the segments in an order based on the secondary keys
of those records in them.

Once we have a sorting of those segments, we can start to
merge them. During the merging, we always pick the lists at
the heads of each segments and move the “smallest” one (the
record with the “smallest” primary key or the record with
the “smallest” secondary key when more than one records
have “smallest” primary keys) into the stream.

V. FRAMEWORK IMPLEMENTATION

In this section, we present the implementation of our dis-
tributed framework (GOM Hadoop) for efficiently executing
RE-ORG tasks. Our framework extends Hadoop to incorpo-
rate the group-order-merge scheme described in Section IV
as an alternative shuffle mechanism3 to its default sort-merge
mechanism. In this way, our framework can also execute
ordinary Hadoop jobs with negligible overhead. Hadoop is

3In this paper, the shuffle mechanism means the whole process from
the point where the map() function produces key-value pairs to the point
where the reduce() function consumes these key-value pairs.

selected as the basis for the implementation because a RE-
ORG task maps very well to the MapReduce programming
model and Hadoop is the most popular open-source MapRe-
duce implementation. The popularity of Hadoop stems from
its good performance in handling failures and its capability
of scaling to a large number of worker nodes. The prototype
implementation of our GOM Hadoop is based on Hadoop
version 1.0.3.

A. Mapper Side Grouping

When a RE-ORG task is realized using GOM Hadoop, the
mapper is instrumented to use only the primary key of each
input record as the its output key, and to use the secondary
key and the record’s value as its output value. The key-
value pairs produced by the map() function are serialized
into a memory buffer. Each key-value pair in the buffer is
assigned a partition number by applying a partition function
to the key. Each key-value pair is also assigned an index for
quick lookup in the buffer. The key-value pairs’ partition
numbers and indexes are stored in an auxiliary memory
buffer. When either one of these two buffers reaches its
maximum capacity, our implementation uses the hash-based
technique presented in Section IV-C to group the key-value
pairs’ indexes (by hashing key-value pairs but storing their
indexes). Note that the buffers will not accept new key-value
pairs/indexes until their contents are spilled out to local disk.
Hence, there is no memory overflow problem. In this group
phase, each index is first put into a hash bucket by reusing
its corresponding partition number as the hash key (i.e., the
partition function is used as hash function f1() in Figure 3).

For indexes with the same partition number, we design a
logical hash table to store them. The logical hash table has
a fixed number of (ns) slots, and each slot has a small hash
table. The logical hash table first utilizes a hash function
h1() to disperse the indexes into slots via hashing on their
corresponding keys. The indexes entering one slot are stored
in one small hash table, which uses another independent
hash function h2() to do mapping between the indexes’
corresponding keys and its entries. Each entry stores indexes
for the same key, and the hash table uses separate chaining
to resolve hash collision. An index is always appended to
the tail of the corresponding entry.

B. Mapper Side Ordering

The order phase picks the indexes stored in hash tables
in certain order, and streams out their corresponding key-
value pairs into a spill file. In this way, key-value pairs in
the spill file are ordered (i.e., in the hash-based order), as
illustrated in Section IV-D. Indexes in bucket i (for partition
i) are picked before the indexes in bucket j (for partition
j), if i < j. In each bucket, the indexes are already ordered
across slots, i.e., indexes in slot e have smaller hashcodes
generated by hash function h1() than indexes in slot f if
e < f . Therefore, indexes in slot e are picked before the



indexes in slot f , if e < f . However, to save space, the small
hash table of each slot has a dynamic number of entries, and
thus it does not support a fixed order of its entries over time
(because it might be rehashed). In order to obtain a fixed
order of a small hash table’s entries, the order phase orders
the entries by sorting the keys corresponding to the indexes
in them. For efficiency, it sorts their hashcodes given by hash
function h2() first, and then sorts the keys themselves. After
sorting, entries are picked by following their sorted order.
The order phase uses each entry to generate a list of key-
value pairs in the spill file via streaming out the key-value
pairs indexed by indexes in the entry.

In each generated spill file, the key-value pairs are divided
into partitions. In each partition, the pairs are ordered by
the key in hash-based order, and those with the same key
preserve their original relative ordering.

C. Mapper Side Merging

Similar to the behavior of vanilla Hadoop, merging of spill
files happens at both the mapper side and the reducer side in
GOM Hadoop. At the mapper side, multiple spill files gener-
ated in the order phase are merged into one single output file.
Depending on the merge parameter (io.sort.factor),
multiple merging rounds might occur. Since each spill file
already has the key-value pair ordered in the order phase, the
merging can be done by using the merge part of the merge-
sort algorithm. That is, the mapper side merging phase can
linearly scan each spill file in an interleaved way, and pass
the “smallest” one of all the currently encountered key-value
pairs to the output file.

If two records have the same primary key, we need to use
their secondary keys to determine which one is “smaller”.
Note that because a mapper sequentially processes records
in input chunk, the key-value pairs in the (i+1)th spill file
are guaranteed to have a “smaller” secondary key than the
key-value pair in the ith spill file. To do this, each key-value
pair is extended to a triple tuple, which includes a counter.
The counter remembers the number of spill files the mapper
already generated. The counters can be used to determine the
order of tuples (key-value pairs) from different spill files. A
smaller counter means a “smaller” secondary key. Moreover,
since it is a small number, the counter takes only a few bytes
and thereby incurs negligible space overhead.

After a mapper merges all its spill files into one single
output file, the partitions in that output file are sent to the
reducers. Similar to the behavior of vanilla Hadoop, GOM
Hadoop determines a partition to be sent to which reducer
by its partition number (generated by the partition function),
i.e., partition i will be sent to reducer i.

D. Reducer Side Merging

Merging also occurs at the reducer side because a reducer
needs to merge all the partitions it fetched from mappers into
one single stream before feeding them into the reduce()

function. Similar to the mapper side merging, the reducer
side merging might occur in multiple rounds as well.

All key-value pairs in one partition come from one input
chunk, which is a consecutive block of the input dataset.
Hence, if one key-value pair of a partition has a “smaller”
secondary key than that in another partition, all the key-
value pairs in the former partition have “smaller” secondary
keys than those in the latter partition. Similar to the counter
in the spill file, we enable each mapper to use its numeric
ID to extend key-value pairs when creating its output file.
However, since we cannot control a mapper to read which
chunk of the input dataset, that one mapper has a smaller
ID does not necessarily mean that the key-value pairs it
produced have “smaller” secondary keys. To solve this
problem, we pick one key-value pair from each partition that
is under merging and then sort them by their secondary keys.
Accordingly, the picked key-value pairs have an order, and
so do the IDs in these pairs. Consequently, we know which
ID denotes a “smaller”/“larger” secondary key.

VI. EVALUATION

In this section, we present the performance evaluation of
the proposed framework.

A. Experiment Setup

We build both a local cluster and a large-scale cluster
on Amazon EC2 [1] to evaluate our framework. The local
cluster consists of 10 machines, and each one has 16
3.33GHz Intel Xeon cores, 16GB of RAM, and 1TB of
hard disk. Each machine is configured to have 12 slots
for mappers and 4 slots for reducers. The Amazon cluster
consists of 100 medium instances, and each instance has
one core, 3.7GB of RAM, and 400GB of hard disk. Each
instance has 2 slots for mappers and 1 slot for reducers.

Two real-world datasets are used. One (click stream data)
is the well known 116GB click stream data related to the
World Cup 1998 [4]. The other one (network flow data) is
network flow metadata extracted from the traffic of a US
national-wide mobile network. A commercial tool is used
to sniff packets from the mobile network’s backbone and
extract semantic metadata of network flows. The metadata
of a flow is written into a text file as multiple lines of records.
A unique numeric ID is included in those lines to associate
them with the same flow. The records of flows are outputted
into the text file as they are generated, and each record has
a timestamp to indicate when the record is generated. The
records of different flows can interleave with each other, and
they are always ordered by their timestamps. The size of the
network flow log data is 1.35TB.

Two types of RE-ORG tasks are evaluated on these two
datasets. One type of tasks has high ratio of its output size to
its input data size. In other words, this type of tasks does not
produce summary of the input data. Rather, this type of tasks
just re-organizes the input data in a certain way. Examples



of this type of tasks include user sessionization and flow
construction. User sessionization groups clicks by user and
then divides the click stream of each user into sessions by a
timeout threshold (e.g., 5 minutes). Flow construction groups
all records (metadata) of the same flow together and ensures
the records are sorted on their timestamps. The other type
of RE-ORG tasks has low ratio of its output size to its input
size, such as computing session duration of all sessions and
figuring out the killer page of each session (last accessed
page of a session). This type of tasks aggregates a lot of
information so as to produce a summary of the input data,
and thus has low ratio output.

We compare our GOM Hadoop with vanilla Hadoop’s
secondary sort implementation when realizing the aforemen-
tioned two types of RE-ORG tasks. The basic MapReduce
approach is not evaluated here, since it is not scalable (as
illustrated in Section III-B).

B. RE-ORG Tasks with High Output Ratio
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Figure 4. Running times of high output ratio tasks.

We first evaluate RE-ORG tasks with high output ratio:
user sessionization on the click stream data, and flow
construction on the network flow data. From Figure 4,
we can see that comparing with vanilla Hadoop, GOM
Hadoop achieves 2.2x speedup on user sessionization and
1.7x speedup on flow construction.

C. RE-ORG Tasks with Low Output Ratio
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Figure 5. Running times of low output ratio tasks.

We then evaluate RE-ORG tasks with low output ratio:
computing session duration and figuring out killer pages on
the click stream data. Compared to the above type, this type
of RE-ORG task shuffles and outputs much less data. Hence,
the sorting (of vanilla Hadoop) would take more portion of
the running time of a task. Accordingly, the benefits of our
framework would be more obvious. As shown in Figure 5,
comparing with vanilla Hadoop, GOM Hadoop achieves 5x
speedup on the session duration task, and obtains similar
performance on the killer page task.

D. Scalability

To validate the scalability of our GOM Hadoop, we
evaluate it on the large-scale Amazon cluster. Both types of

RE-ORG tasks, the user sessionization task and the session
duration task, are tested (on the click stream data). The
performance of vanilla Hadoop is also evaluated to be a
reference point.

Figure 6a and Figure 6b plot the performance as the
number of nodes (instances) being used in the cluster in-
creases from 20 to 100. From the figures, we can see that the
running times of both tasks decrease smoothly as the number
of nodes increases. In addition, GOM Hadoop outperforms
vanilla Hadoop with any number of nodes in the cluster. For
example, when the number of nodes is 100, GOM Hadoop
achieves 4.7x speedup on the user sessionization task and
6.3x speedup on the session duration task. Comparing with
that on the local cluster, GOM Hadoop on the Amazon
cluster obtains a even better speedup. This is because that
the Amazon instance is less powerful (with a slower CPU)
than the local machine and thus the deficiency of the CPU-
intensive sorting in vanilla Hadoop is more serious.
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Figure 6. Varying number of nodes. Running times are on a log scale.

We also measure how GOM Hadoop scales with increas-
ing size of the input data. We choose subset data of different
sizes from the click stream data, and perform both the
user sessionization task and the session duration task. As
presented in Figure 7a and Figure 7b, when realized by
GOM Hadoop, the running times of both tasks increase
linearly as the size of the input data increases. Moreover,
the running time of either task on GOM Hadoop is always
shorter than that on vanilla Hadoop. Therefore, our GOM
Hadoop demonstrates a good scaling performance.
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Figure 7. Varying size of the input dataset.

VII. RELATED WORK

MapReduce [11] has gained considerable attention over
the past several years as a large-scale data processing
framework. A series of studies have extended the basic idea
of MapReduce and optimized its performance in various ap-
plications. For example, several studies focus on improving
MapReduce for iterative computations [12], [26]–[28].

Using hash techniques to improve the performance of
MapReduce has been explored in [16], [24]. However,



running RE-ORG directly on those frameworks incurs sig-
nificant overhead that could be avoided. The most relevant
work to ours is the one-pass analytics platform proposed
by Li et al. [16]. They utilize multi-level hashing to group
data by key. Unfortunately, their platform does not preserve
the original relative order of records in each group. Imple-
menting a RE-ORG task on their platform requires the user
to write code for sorting records based on their secondary
keys, as in the basic MapReduce approach, and thus it is
not a scalable solution. Map-Reduce-Merge [24] adopts hash
techniques to realize hash join. Each reducer maintains a
hash table so as to merge partitions from mappers. However,
it does not preserve the original relative order of records in
the merged group, and has to maintain an on-disk (slow)
hash table when the data size exceeds memory capacity.

Efficiently processing event log files has been studied in
[10], [17], which have different focuses with this paper.
In-situ MapReduce [17] aims to process data on location
without uploading it to a centralized place. TiMR [10] builds
a time-oriented data processing system on top of MapReduce
so as to support queries in the behavioral targeting adver-
tisement. In contrast, our work focuses on how to efficiently
support relative order-preserving based grouping tasks.

VIII. CONCLUSION

We observed that a large class of analytical workload
in big data analytics can be considered as relative order-
preserving based grouping (RE-ORG) tasks on ordered
datasets. Aslo, we identified that the popular big data analyt-
ics tool, MapReduce/Hadoop, cannot efficiently realize such
tasks because of its internal sort-merge mechanism. There-
fore, this paper presents a scalable distributed framework for
efficiently executing RE-ORG tasks. Our framework adopts
a novel group-order-merge mechanism to efficiently utilize
the ordering property of the ordered datasets. We evaluated
its performance via extensive experiments. The evaluation
results show that our framework can be up to 6.3 times
faster than the current Hadoop implementation in executing
RE-ORG tasks on real-world datasets.
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